Abstract
We extend to global function fields some Hasse principles for homogeneous spaces of connected linear algebraic groups proved earlier by several authors in the case of number fields. We also give some applications.
This is a preview of subscription content, access via your institution.
References
M. V. Borovoi, “The Hasse principle for homogeneous spaces,” J. Reine Angew. Math. 426, 179–192 (1992).
M. V. Borovoi, “Abelianization of the second nonabelian Galois cohomology,” Duke Math. J. 72 (1), 217–239 (1993).
M. V. Borovoi, “The Brauer–Manin obstructions for homogeneous spaces with connected or abelian stabilizer,” J. Reine Angew. Math. 473, 181–194 (1996).
M. Borovoi, Abelian Galois Cohomology of Reductive Groups (Am. Math. Soc., Providence, RI, 1998), Mem. AMS 132 (626).
M. Borovoi, “A cohomological obstruction to the Hasse principle for homogeneous spaces,” Math. Ann. 314, 491–504 (1999).
M. Borovoi, “Homogeneous spaces of Hilbert type,” Int. J. Number Theory 11 (2), 397–405 (2015); arXiv: 1304.1872v1 [math.NT].
L. Breen, On the Classification of 2-Stacks and 2-Gerbes (Soc. Math. France, Paris, 1994), Astérisque 225.
F. Bruhat and J. Tits, “Groupes algébriques simples sur un corps local: cohomologie galoisienne, décomposition d’Iwasawa et de Cartan,” C. R. Acad. Sci. Paris A 263, 867–869 (1966).
J.-L. Colliot-Thélène, “Résolutions flasques des groupes linéaires connexes,” J. Reine Angew. Math. 618, 77–133 (2008).
J.-L. Colliot-Thélène, P. Gille, and R. Parimala, “Arithmetic of linear algebraic groups over 2-dimensional geometric fields,” Duke Math. J. 121, 285–341 (2004).
J.-C. Douai, “2-cohomologie galoisienne des groupes semi-simples: Applications de la cohomologie non abelienne,” Thèse d’Etat (Univ. Lille 1, 1976; éd. Univ. Eur., Südwestdtsch.-Verl., Saabrücken, 2010).
J.-C. Douai, “Espaces homogènes et arithmétique des schémas en groupes réductifs sur les anneaux de Dedekind,” J. Théor. Nombres Bord. 7, 21–26 (1995).
J. Giraud, Cohomologie non abélienne (Springer, Berlin, 1971), Grundl. Math. Wiss. 169.
C. D. González-Avilés, “Quasi-abelian crossed modules and nonabelian cohomology,” J. Algebra 369, 235–255 (2012).
C. D. González-Avilés, “Flasque resolutions of reductive group schemes,” Cent. Eur. J. Math. 11 (7), 1159–1176 (2013).
G. Harder, “Bericht über neuere Resultate der Galoiskohomologie halbeinfacher Gruppen,” Jahresber. Dtsch. Math.-Ver. 70, 182–216 (1967/1968).
G. Harder, “über die Galoiskohomologie der halbeinfacher Matrizengruppen. III,” J. Reine Angew. Math. 274–275, 125–138 (1975).
J. E. Humphreys, Linear Algebraic Groups, 2nd ed. (Springer, New York, 1981), Grad. Texts Math. 52.
M. Kneser, “Galois-Kohomologie halbeinfacher algebraischer Gruppen über p-adischen Körpern. I, II,” Math. Z. 88, 40–47 (1965); 89, 250–272.
M. Kneser, Lectures on Galois Cohomology of Classical Groups (Tata Inst. Fundam. Res., Bombay, 1969).
T.-Y. Lee, “Embedding functors and their arithmetic properties,” Comment. Math. Helv. 89, 671–717 (2014); arXiv: 1211.3564v1 [math.GR].
N. T. Ngoan and N. Q. Thng, “On some Hasse principles for algebraic groups over global fields,” Proc. Jpn. Acad. A 90 (5), 73–78 (2014).
G. Prasad and A. S. Rapinchuk, “Local–global principles for embedding of fields with involution into simple algebras with involution,” Comment. Math. Helv. 85, 583–645 (2010).
A. S. Rapinchuk, “The Hasse principle for symmetric spaces,” Dokl. Akad. Nauk. BSSR 31 (9), 773–776 (1987).
N. Saavedra Rivano, Catégories tannakiennes (Springer, Berlin, 1972), Lect. Notes Math. 265.
J.-J. Sansuc, “Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres,” J. Reine Angew. Math. 327, 12–80 (1981).
Schémas en groupes (SGA 3), Ed. by M. Demazure and A. Grothendieck (Springer, Berlin, 1970), Vol. 3}, Lect. Notes Math. 153
S. S. Shatz, “The cohomological dimension of certain Grothendieck topologies,” Ann. Math., Ser. 2, 83, 572–595 (1966).
S.-C. Shih, T.-C. Yang, and C.-F. Yu, “Embeddings of fields into simple algebras over global fields,” Asian J. Math. 18, 365–386 (2014); arXiv: 1108.0830v3 [math.NT].
T. A. Springer, “Nonabelian H2 in Galois cohomology,” in Algebraic Groups and Discontinuous Subgroups (Am. Math. Soc., Providence, RI, 1966), Proc. Symp. Pure Math. 9, pp. 164–182.
R. Steinberg, Endomorphisms of Linear Algebraic Groups (Am. Math. Soc., Providence, RI, 1968), Mem. AMS, No. 90.
N. Q. Thắng, “On Galois cohomology of semisimple groups over local and global fields of positive characteristic,” Math. Z. 259, 457–470 (2008).
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to V.P. Platonov on his 75th birthday
Rights and permissions
About this article
Cite this article
Ngoan, N.T., Thắng, N.Q. On some Hasse principles for homogeneous spaces of algebraic groups over global fields of positive characteristic. Proc. Steklov Inst. Math. 292, 171–184 (2016). https://doi.org/10.1134/S0081543816010119
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0081543816010119
Keywords
- Exact Sequence
- STEKLOV Institute
- Homogeneous Space
- Global Function
- Embedding Problem