M. G. Benli, R. Grigorchuk, and T. Nagnibeda, “Universal groups of intermediate growth and their invariant random subgroups,” Funkts. Anal. Prilozh. 49 (3), 1–21 (2015) [Funct. Anal. Appl. 49, 159–174 (2015)].
MathSciNet
Article
MATH
Google Scholar
I. Bondarenko, R. Grigorchuk, R. Kravchenko, Y. Muntyan, V. Nekrashevych, D. Savchuk, and Z. Šunić, “Classification of groups generated by 3-state automata over 2-letter alphabet,” Algebra Discrete Math., No. 1, 1–163 (2008); arXiv: 0803.3555 [math.GR].
MathSciNet
MATH
Google Scholar
I. V. Bondarenko and D. M. Savchuk, “On Sushchansky p-groups,” Algebra Discrete Math., No. 2, 22–42 (2007); arXiv:math/0612200 [math.GR].
MathSciNet
MATH
Google Scholar
J. Buescu, M. Kulczycki, and I. Stewart, “Liapunov stability and adding machines revisited,” Dyn. Syst. 21 (3), 379–384 (2006).
MathSciNet
Article
MATH
Google Scholar
J. Buescu and I. Stewart, “Liapunov stability and adding machines,” Ergodic Theory Dyn. Syst. 15 (2), 271–290 (1995).
MathSciNet
Article
MATH
Google Scholar
A. I. Bufetov, “Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group,” Mat. Sb. 205 (2), 39–70 (2014) [Sb. Math. 205, 192–219 (2014)].
MathSciNet
Article
MATH
Google Scholar
D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and W. P. Thurston, Word Processing in Groups (Jones and Bartlett Publ., Boston, MA, 1992).
MATH
Google Scholar
R. H. Farrell, “Representation of invariant measures,” Ill. J. Math. 6, 447–467 (1962).
MathSciNet
MATH
Google Scholar
N. J. Fine, “Binomial coefficients modulo a prime,” Am. Math. Mon. 54, 589–592 (1947).
MathSciNet
Article
MATH
Google Scholar
S. V. Fomin, “On measures invariant under a group of transformations,” Izv. Akad. Nauk SSSR, Ser. Mat. 14 (3), 261–274 (1950) [Am. Math. Soc. Transl., Ser. 2, 51, 317–332 (1966)].
Google Scholar
P. W. Gawron, V. V. Nekrashevych, and V. I. Sushchansky, “Conjugation in tree automorphism groups,” Int. J. Algebra Comput. 11 (5), 529–547 (2001).
MathSciNet
Article
MATH
Google Scholar
R. I. Grigorchuk, “Burnside’s problem on periodic groups,” Funkts. Anal. Prilozh. 14 (1), 53–54 (1980) [Funct. Anal. Appl. 14, 41–43 (1980)].
MathSciNet
MATH
Google Scholar
R. I. Grigorchuk, “Degrees of growth of finitely generated groups, and the theory of invariant means,” Izv. Akad. Nauk SSSR, Ser. Mat. 48 (5), 939–985 (1984) [Math. USSR, Izv. 25 (2), 259–300 (1985)].
MathSciNet
Google Scholar
R. I. Grigorchuk, “Just infinite branch groups,” in New Horizons in Pro-p Groups (Birkhäuser, Boston, MA, 2000), Prog. Math. 184, pp. 121–179.
R. Grigorchuk, “Solved and unsolved problems around one group,” in Infinite Groups: Geometric, Combinatorial and Dynamical Aspects (Birkhäuser, Basel, 2005), Progr. Math. 284, pp. 117–218.
Chapter
Google Scholar
R. I. Grigorchuk, “Some topics in the dynamics of group actions on rooted trees,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 273, 72–191 (2011) [Proc. Steklov Inst. Math. 273, 64–175 (2011)].
MathSciNet
MATH
Google Scholar
R. Grigorchuk and P. de la Harpe, “Amenability and ergodic properties of topological groups: From Bogolyubov onwards,” arxiv: 1404.7030 [math.GR].
R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanskii, “Automata, dynamical systems, and groups,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 231, 134–214 (2000) [Proc. Steklov Inst. Math. 231, 128–203 (2000)].
MathSciNet
MATH
Google Scholar
R. Grigorchuk and Z. Šunić, “Schreier spectrum of the Hanoi Towers group on three pegs,” in Analysis on Graphs and Its Applications (Am. Math. Soc., Providence, RI, 2008), Proc. Symp. Pure Math. 77, pp. 183–198.
Chapter
Google Scholar
R. I. Grigorchuk and A. Zuk, “The lamplighter group as a group generated by a 2-state automaton, and its spectrum,” Geom. Dedicata 87 (1–3), 209–244 (2001).
MathSciNet
Article
MATH
Google Scholar
R. I. Grigorchuk and A. Zuk, “On a torsion-free weakly branch group defined by a three state automaton,” Int. J. Algebra Comput. 12 (1–2), 223–246 (2002).
MathSciNet
Article
MATH
Google Scholar
L. Kaloujnine, “La structure des p-groupes de Sylow des groupes symétriques finis,” Ann. Sci. éc. Norm. Super., Sér. 3, 65, 239–276 (1948).
MathSciNet
MATH
Google Scholar
A. S. Kechris and B. D. Miller, Topics in Orbit Equivalence (Springer, Berlin, 2004), Lect. Notes Math. 1852.
Book
MATH
Google Scholar
I. Klimann, “The finiteness of a group generated by a 2-letter invertible–reversible Mealy automaton is decidable,” in Proc. 30th Int. Symp. on Theoretical Aspects of Computer Science (STACS 2013), Ed. by N. Portier and T. Wilke (Schloss Dagstuhl–Leibniz-Zent. Inform., Wadern, 2013), Leibniz Int. Proc. Inform. 20, pp. 502–513.
Google Scholar
I. Klimann, M. Picantin, and D. Savchuk, “A connected 3-state reversible Mealy automaton cannot generate an infinite Burnside group,” in Developments in Language Theory: Proc. 19th Int. Conf., DLT 2015, Liverpool, 2015 (Springer, Cham, 2015), Lect. Notes Comput. Sci. 9168, pp. 313–325; arxiv: 1409.6142 [cs.FL].
Chapter
Google Scholar
I. Klimann, M. Picantin, and D. Savchuk, “Orbit automata as a new tool to attack the order problem in automaton groups,” J. Algebra 445, 433–457 (2016); arxiv: 1411.0158 [math.GR].
MathSciNet
Article
MATH
Google Scholar
A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung (Springer, Berlin, 1973).
MATH
Google Scholar
G. W. Mackey, “Ergodic transformation groups with a pure point spectrum,” Ill. J. Math. 8, 593–600 (1964).
MathSciNet
MATH
Google Scholar
V. Nekrashevych, Self-similar Groups (Am. Math. Soc., Providence, RI, 2005), Math. Surv. Monogr. 117.
Book
MATH
Google Scholar
K. R. Parthasarathy, Probability Measures on Metric Spaces (AMS Chelsea Publ., Providence, RI, 2005).
MATH
Google Scholar
V. A. Rokhlin, “Selected topics from the metric theory of dynamical systems,” Usp. Mat. Nauk 4 (2), 57–128 (1949) [Am. Math. Soc. Transl., Ser. 2, 49, 171–240 (1966)].
MathSciNet
Google Scholar
D. M. Savchuk and S. N. Sidki, “Affine automorphisms of rooted trees,” Geom. Dedicata (in press); arXiv: 1510.08434 [math.GR].
V. I. SuŠanski, “Periodic p-groups of permutations and the unrestricted Burnside problem,” Dokl. Akad. Nauk SSSR 247 (3), 557–561 (1979) [Sov. Math., Dokl. 20, 766–770 (1979)].
MathSciNet
Google Scholar
V. S. Varadarajan, “Groups of automorphisms of Borel spaces,” Trans. Am. Math. Soc. 109, 191–220 (1963).
MathSciNet
Article
MATH
Google Scholar