Skip to main content
Log in

On the coincidence of Grünberg-Kegel graphs of a finite simple group and its proper subgroup

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Let G be a finite group. The spectrum of G is the set ω(G) of orders of all its elements. The subset of prime elements of ω(G) is denoted by π(G). The spectrum ω(G) of a group G defines its prime graph (or Grünberg-Kegel graph) Γ(G) with vertex set π(G), in which any two different vertices r and s are adjacent if and only if the number rs belongs to the set ω(G). We describe all the cases when the prime graphs of a finite simple group and of its proper subgroup coincide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Vasil’ev and E. P. Vdovin, “An adjacency criterion in the prime graph of a finite simple group,” Algebra and Logic 44(6), 381–406 (2005).

    Article  MathSciNet  Google Scholar 

  2. A. V. Vasil’ev and E. P. Vdovin, “Cocliques of maximal size in the prime graph of a finite simple group,” Algebra Logic 50(4), 291–322 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  3. M. A. Zvezdina, “On nonabelian simple groups having the same prime graph as an alternating group,” Sib. Mat. J. 54(1), 47–55 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  4. A. S. Kondrat’ev, Lie Groups and Algebras (IMM UrO RAN, Yekaterinburg, 2009) [in Russian].

    Google Scholar 

  5. A. S. Kondrat’ev and I. V. Khramtsov, “On finite tetraprimary groups,” Proc. Steklov Inst. Math. 279(Suppl. 1), S43–S61 (2012).

    Article  MATH  Google Scholar 

  6. A. S. Kondrat’ev and I. V. Khramtsov, “The complete reducibility of some GF(2)A 7-modules,” Proc. Steklov Inst. Math. 283(Suppl. 1), S86–S90 (2013).

    Article  MATH  Google Scholar 

  7. M. Aschbacher, Finite Group Theory (Cambridge Univ. Press, Cambridge, 1986).

    MATH  Google Scholar 

  8. M. Aschbacher, “On the maximal subgroups of the finite classical groups,” Invent. Math. 76(3), 469–514 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  9. J. N. Bray, D. F. Holt, and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups (Cambridge Univ. Press, Cambridge, 2013).

    Book  MATH  Google Scholar 

  10. J. H. Conway, R. T. Curtis, S. P. Norton, et al., Atlas of Finite Groups (Clarendon, Oxford, 1985).

    MATH  Google Scholar 

  11. T. Estermann, “On Goldbach’s problem: Proof that almost all even positive integers are sums of two primes,” Proc. London Math. Soc., Ser. 2, 44, 307–314 (1938).

    Article  Google Scholar 

  12. D. Gorenstein, R. Lyons, and R. Solomon, The Classification of the Finite Simple Groups: Number 3 (Amer. Math. Soc., Providence, RI, 1998), Ser. Math. Surveys and Monographs, Vol. 40, No. 3.

  13. G. H. Hardy and J. E. Littlewood, “Some problems of’ partitio numerorum.’ III: On the expression of a number as a sum of primes,” Acta Math. 44, 1–70 (1922).

    Article  MathSciNet  Google Scholar 

  14. P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups (Cambridge Univ. Press, Cambridge, 1990).

    Book  MATH  Google Scholar 

  15. M. W. Liebeck, C. E. Praeger, and J. Saxl, “Transitive subgroups of primitive permutation groups,” J. Algebra 234, 291–361 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  16. T. Oliveira e Silva, “Goldbach conjecture verification,” http://sweet.ua.pt/tos/goldbach.html. Submitted March 30, 2014.

  17. E. W. Weisstein, “Goldbach conjecture,” in MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/GoldbachConjecture.html.

  18. K. Zsigmondy, “Zur Theorie der Potenzreste,” Monatsh. Math. Phys. 3(1), 265–284 (1892).

    Article  MATH  MathSciNet  Google Scholar 

  19. “From Goldbach conjecture: Number of decompositions of 2n into an unordered sum of two odd primes,” in The On-Line Encyclopedia of Integer Sequences. http://oeis.org/A002375.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Maslova.

Additional information

Dedicated to the memory of my grandfather Nikolai Yakovlevich Maslov

Original Russian Text © N.V.Maslova, 2014, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Vol. 20, No. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslova, N.V. On the coincidence of Grünberg-Kegel graphs of a finite simple group and its proper subgroup. Proc. Steklov Inst. Math. 288 (Suppl 1), 129–141 (2015). https://doi.org/10.1134/S0081543815020133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543815020133

Keywords

Navigation