Abstract
The notion of generalized Seifert fibration is introduced; it is shown that the projections of certain Eschenburg 7-manifolds \(W_{\bar n}^7 \) onto ℂP2 define such fibrations; and their characteristic classes corresponding to the generators of H 2(B(U(2)/ℤ2n );ℤ) are defined.
References
I. A. Taimanov, “On totally geodesic embeddings of 7-dimensional manifolds into 13-dimensional manifolds of positive sectional curvature,” Mat. Sb. 187 (12), 121–136 (1996) [Sb. Math. 187, 1853–1867 (1996)].
J.-H. Eschenburg, “New examples of manifolds with strictly positive curvature,” Invent. Math. 66, 469–480 (1982).
H. Seifert, “Topologie dreidimensionaler gefaserter Ra¨ume,” Acta Math. 60, 147–238 (1933).
P. Scott, “The geometries of 3-manifolds,” Bull. London Math. Soc. 15, 401–487 (1983).
T. Püttmann, “Optimal pinching constants of odd dimensional homogeneous spaces,” Invent.Math. 138, 631–684 (1999).
O. Dearricott and J.-H. Eschenburg, “Totally geodesic embeddings of 7-manifolds in positively curved 13- manifolds,” Manuscr. Math. 114 (4), 447–456 (2004).
M. Kerin, “A note on totally geodesic embeddings of Eschenburg spaces into Bazaikin spaces,” Ann. Global Anal. Geom. 43 (1), 63–73 (2013).
L. A. Florit and W. Ziller, “Orbifold fibrations of Eschenburg spaces,” Geom. Dedicata 127, 159–175 (2007).
N. E. Russkikh, “On generalized 7-dimensional Seifert fibrations over the complex projective plane,” Sib. Elektron. Mat. Izv. 11, 966–974 (2014).
H. Holmann, “Seifertsche Faserräume,” Math. Ann. 157, 138–166 (1964).
P. Orlik, Seifert Manifolds (Springer, Berlin, 1972), Lect. Notes Math. 291.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Taimanov, I.A. On a higher dimensional generalization of Seifert fibrations. Proc. Steklov Inst. Math. 288, 145–152 (2015). https://doi.org/10.1134/S0081543815010113
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0081543815010113