Skip to main content
Log in

Abstract

The notion of generalized Seifert fibration is introduced; it is shown that the projections of certain Eschenburg 7-manifolds \(W_{\bar n}^7 \) onto ℂP2 define such fibrations; and their characteristic classes corresponding to the generators of H 2(B(U(2)/ℤ2n );ℤ) are defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. I. A. Taimanov, “On totally geodesic embeddings of 7-dimensional manifolds into 13-dimensional manifolds of positive sectional curvature,” Mat. Sb. 187 (12), 121–136 (1996) [Sb. Math. 187, 1853–1867 (1996)].

    Article  MathSciNet  Google Scholar 

  2. J.-H. Eschenburg, “New examples of manifolds with strictly positive curvature,” Invent. Math. 66, 469–480 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Seifert, “Topologie dreidimensionaler gefaserter Ra¨ume,” Acta Math. 60, 147–238 (1933).

    Article  MathSciNet  Google Scholar 

  4. P. Scott, “The geometries of 3-manifolds,” Bull. London Math. Soc. 15, 401–487 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  5. T. Püttmann, “Optimal pinching constants of odd dimensional homogeneous spaces,” Invent.Math. 138, 631–684 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  6. O. Dearricott and J.-H. Eschenburg, “Totally geodesic embeddings of 7-manifolds in positively curved 13- manifolds,” Manuscr. Math. 114 (4), 447–456 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Kerin, “A note on totally geodesic embeddings of Eschenburg spaces into Bazaikin spaces,” Ann. Global Anal. Geom. 43 (1), 63–73 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  8. L. A. Florit and W. Ziller, “Orbifold fibrations of Eschenburg spaces,” Geom. Dedicata 127, 159–175 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  9. N. E. Russkikh, “On generalized 7-dimensional Seifert fibrations over the complex projective plane,” Sib. Elektron. Mat. Izv. 11, 966–974 (2014).

    Google Scholar 

  10. H. Holmann, “Seifertsche Faserräume,” Math. Ann. 157, 138–166 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Orlik, Seifert Manifolds (Springer, Berlin, 1972), Lect. Notes Math. 291.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Taimanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taimanov, I.A. On a higher dimensional generalization of Seifert fibrations. Proc. Steklov Inst. Math. 288, 145–152 (2015). https://doi.org/10.1134/S0081543815010113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543815010113

Keywords

Navigation