Skip to main content
Log in

Embedded flexible spherical cross-polytopes with nonconstant volumes

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We construct examples of embedded flexible cross-polytopes in the spheres of all dimensions. These examples are interesting from two points of view. First, in dimensions 4 and higher, they are the first examples of embedded flexible polyhedra. Notice that, in contrast to the spheres, in the Euclidean and Lobachevsky spaces of dimensions 4 and higher still no example of an embedded flexible polyhedron is known. Second, we show that the volumes of the constructed flexible cross-polytopes are nonconstant during the flexion. Hence these cross-polytopes give counterexamples to the Bellows Conjecture for spherical polyhedra. Earlier a counterexample to this conjecture was constructed only in dimension 3 (V.A. Alexandrov, 1997), and it was not embedded. For flexible polyhedra in spheres we suggest a weakening of the Bellows Conjecture, which we call the Modified Bellows Conjecture. We show that this conjecture holds for all flexible cross-polytopes of the simplest type, which includes our counterexamples to the ordinary Bellows Conjecture. Simultaneously, we obtain several geometric results on flexible cross-polytopes of the simplest type. In particular, we write down relations for the volumes of their faces of codimensions 1 and 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Alekseevskij, E. B. Vinberg, and A. S. Solodovnikov, “Geometry of spaces of constant curvature,” in Geometry. II (Springer, Berlin, 1993), Encycl. Math. Sci. 29, pp. 1–138.

    Chapter  Google Scholar 

  2. R. Alexander, “Lipschitzian mappings and total mean curvature of polyhedral surfaces. I,” Trans. Am. Math. Soc. 288, 661–678 (1985).

    Article  MATH  Google Scholar 

  3. V. Alexandrov, “An example of a flexible polyhedron with nonconstant volume in the spherical space,” Beitr. Algebra Geom. 38 (1), 11–18 (1997).

    MATH  MathSciNet  Google Scholar 

  4. K. Aomoto, “Analytic structure of Schläfli function,” Nagoya Math. J. 68, 1–16 (1977).

    MATH  MathSciNet  Google Scholar 

  5. G. T. Bennett, “Deformable octahedra,” Proc. London Math. Soc., Ser. 2, 10, 309–343 (1912).

    Article  Google Scholar 

  6. R. Bricard, “Mémoire sur la théorie de l’octaèdre articulé,” J. Math. Pures Appl., Sér. 5, 3, 113–148 (1897).

    MATH  Google Scholar 

  7. R. Connelly, “A counterexample to the rigidity conjecture for polyhedra,” Publ. Math., Inst. Hautes étud. Sci. 47, 333–338 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Connelly, “Conjectures and open questions in rigidity,” in Proc. Int. Congr. Math., Helsinki, 1978 (Acad. Sci. Fennica, Helsinki, 1980), Vol. 1, pp. 407–414.

    Google Scholar 

  9. R. Connelly, I. Sabitov, and A. Walz, “The bellows conjecture,” Beitr. Algebra Geom. 38 (1), 1–10 (1997).

    MATH  MathSciNet  Google Scholar 

  10. H. S. M. Coxeter, “The functions of Schläfli and Lobatschefsky,” Q. J. Math. 6, 13–29 (1935).

    Article  MathSciNet  Google Scholar 

  11. A. A. Gaifullin, “Sabitov polynomials for volumes of polyhedra in four dimensions,” Adv. Math. 252, 586–611 (2014); arXiv: 1108.6014 [math.MG].

    Article  MATH  MathSciNet  Google Scholar 

  12. A. A. Gaifullin, “Generalization of Sabitov’s theorem to polyhedra of arbitrary dimensions,” Discrete Comput. Geom. 52 (2), 195–220 (2014); arXiv: 1210.5408 [math.MG].

    Article  MATH  MathSciNet  Google Scholar 

  13. A. A. Gaifullin, “Flexible cross-polytopes in spaces of constant curvature,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 286, 88–128 (2014) [Proc. Steklov Inst. Math. 286, 77–113 (2014)]; arXiv: 1312.7608 [math.MG].

    Google Scholar 

  14. A. A. Gaifullin, “Volumes of flexible polyhedra,” in Geometry Days in Novosibirsk–2014: Abstracts Int. Conf. Dedicated to the 85th Birthday of Yu.G. Reshetnyak, Novosibirsk, Sept. 24–27, 2014 (Sobolev Inst. Math., Novosibirsk, 2014), pp. 98–99.

    Google Scholar 

  15. W. S. Massey, Algebraic Topology: An Introduction (Harcout, Brace & World, New York, 1967).

    MATH  Google Scholar 

  16. V. V. Prasolov, Elements of Combinatorial and Differential Topology (Am. Math. Soc., Providence, RI, 2006), Grad. Stud. Math. 74.

    Book  MATH  Google Scholar 

  17. I. Kh. Sabitov, “Volume of a polyhedron as a function of its metric,” Fundam. Prikl. Mat. 2 (4), 1235–1246 (1996).

    MATH  MathSciNet  Google Scholar 

  18. I. Kh. Sabitov, “A generalized Heron–Tartaglia formula and some of its consequences,” Mat. Sb. 189 (10), 105–134 (1998) [Sb. Math. 189, 1533–1561 (1998)].

    Article  MathSciNet  Google Scholar 

  19. I. Kh. Sabitov, “The volume as a metric invariant of polyhedra,” Discrete Comput. Geom. 20 (4), 405–425 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  20. I. Kh. Sabitov, “Algebraic methods for solution of polyhedra,” Usp. Mat. Nauk 66 (3), 3–66 (2011) [Russ. Math. Surv. 66, 445–505 (2011)].

    Article  MathSciNet  Google Scholar 

  21. H. Stachel, “Flexible cross-polytopes in the Euclidean 4-space,” J. Geom. Graph. 4 (2), 159–167 (2000).

    MATH  MathSciNet  Google Scholar 

  22. H. Stachel, “Flexible octahedra in the hyperbolic space,” in Non-Euclidean Geometries: János Bolyai Memorial Volume, Ed. by A. Prékopa et al. (Springer, New York, 2006), Math. Appl. 581, pp. 209–225.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Gaifullin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaifullin, A.A. Embedded flexible spherical cross-polytopes with nonconstant volumes. Proc. Steklov Inst. Math. 288, 56–80 (2015). https://doi.org/10.1134/S0081543815010058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543815010058

Keywords

Navigation