Advertisement

An algorithm for studying the renormalization group dynamics in the projective space

  • M. D. MissarovEmail author
  • A. F. Shamsutdinov
Article

Abstract

The renormalization group dynamics is studied in the four-component fermionic hierarchical model in the space of coefficients that determine the Grassmann-valued density of the free measure. This space is treated as a two-dimensional projective space. If the renormalization group parameter is greater than 1, then the only attracting fixed point of the renormalization group transformation is defined by the density of the Grassmann δ-function. Two different invariant neighborhoods of this fixed point are described, and an algorithm is constructed that allows one to classify the points on the plane according to the way they tend to the fixed point.

Keywords

Renormalization Group STEKLOV Institute Projective Space Boundary Circle Grassmann Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Missarov, “Renormalization group and renormalization theory in p-adic and adelic scalar models,” in Dynamical Systems and Statistical Mechanics, Ed. by Ya. G. Sinai (Am. Math. Soc., Providence, RI, 1991), Adv. Sov. Math. 3, pp. 143–164.Google Scholar
  2. 2.
    V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (Fizmatlit, Moscow, 1994; World Sci., Singapore, 1994).CrossRefGoogle Scholar
  3. 3.
    M. D. Missarov, “Continuum limit in the fermionic hierarchical model,” Teor. Mat. Fiz. 118(1), 40–50 (1999) [Theor. Math. Phys. 118, 32–40 (1999)].CrossRefMathSciNetGoogle Scholar
  4. 4.
    M. D. Missarov, “Renormalization group in a fermionic hierarchical model in projective coordinates,” Teor. Mat. Fiz. 173(3), 355–362 (2012) [Theor. Math. Phys. 173, 1637–1643 (2012)].CrossRefMathSciNetGoogle Scholar
  5. 5.
    E. Yu. Lerner and M. D. Missarov, “Fixed points of renormalization group for the hierarchical fermionic model,” J. Stat. Phys. 76(3–4), 805–817 (1994).CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    E. Yu. Lerner and M. D. Missarov, “Global renormalization group flow and thermodynamic limit for the hierarchical fermionic model,” Teor. Mat. Fiz. 107(2), 201–212 (1996) [Theor. Math. Phys. 107, 579–588 (1996)].CrossRefMathSciNetGoogle Scholar
  7. 7.
    M. D. Missarov, “RG-invariant curves in the fermionic hierarchical model,” Teor. Mat. Fiz. 114(3), 323–336 (1998) [Theor. Math. Phys. 114, 255–265 (1998)].CrossRefMathSciNetGoogle Scholar
  8. 8.
    M. D. Missarov, “Critical phenomena in the fermionic hierarchical model,” Teor. Mat. Fiz. 117(3), 471–488 (1998) [Theor. Math. Phys. 117, 1483–1498 (1998)].CrossRefMathSciNetGoogle Scholar
  9. 9.
    M. D. Missarov, “Dynamical phenomena in the hierarchical fermionic model,” Phys. Lett. A 253, 41–46 (1999).CrossRefGoogle Scholar
  10. 10.
    M. D. Missarov, “Renormalization group solution of fermionic Dyson model,” in Asymptotic Combinatorics with Application to Mathematical Physics, Ed. by V. A. Malyshev and A. M. Vershik (Kluwer, Dordrecht, 2002), NATO Sci. Ser. II: Math. Phys. Chem. 77, pp. 151–166.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Kazan (Volga Region) Federal UniversityKazanRussia

Personalised recommendations