Skip to main content
Log in

Formulation of quantum mechanics with dynamical time

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider quantum mechanics for which the system time is one of generalized coordinates. The generalized Hamiltonian has an unbounded spectrum, which allows us to introduce a Hermitian time operator. In the proposed formulation of quantum mechanics, a system time and observer’s time are introduced. The Schrödinger equation in the system time either does not hold or holds only approximately. The wave function is assumed to be square integrable with respect to all coordinates, including the system time. In some limit, this formalism reproduces standard quantum mechanics and the corresponding measurement theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. M. Dirac, “Homogeneous variables in classical dynamics,” Math. Proc. Cambridge Philos. Soc. 29, 389–400 (1933).

    Article  Google Scholar 

  2. P. A. M. Dirac, “Generalized Hamiltonian dynamics,” Can. J. Math. 2, 129–148 (1950).

    Article  MATH  MathSciNet  Google Scholar 

  3. P. A. M. Dirac, “Generalized Hamiltonian dynamics,” Proc. R. Soc. London A 246, 326–332 (1958).

    Article  MATH  MathSciNet  Google Scholar 

  4. P. A. M. Dirac, Lectures on Quantum Mechanics (Belfer Grad. Sch. Sci., Yeshiva Univ., New York, 1964; Izhevsk. Resp. Tipogr., Izhevsk, 1998).

    Google Scholar 

  5. R. Arnowitt, S. Deser, and C. W. Misner, “The dynamics of general relativity,” in Gravitation: An Introduction to Current Research, Ed. by L. Witten (J. Wiley & Sons, New York, 1962), Ch. 7, pp. 227–265.

    Google Scholar 

  6. D. M. Gitman and I. V. Tyutin, Canonical Quantization of Fields with Constraints (Nauka, Moscow, 1986) [in Russian].

    MATH  Google Scholar 

  7. M. G. Ivanov, “Curvature of phase space,” Vestn. Samar. Gos. Tekh. Univ., Fiz.-Mat. Nauki, No. 1, 361–368 (2013).

    Google Scholar 

  8. I. V. Volovich, “Time irreversibility problem and functional formulation of classical mechanics,” Vestn. Samar. Gos. Tekh. Univ., Estestvennonauchn. Ser., No. 8/1, 35–55 (2008); arXiv: 0907.2445 [cond-mat.stat-mech].

    Google Scholar 

  9. I. V. Volovich, “Randomness in classical mechanics and quantum mechanics,” Found. Phys. 41(3), 516–528 (2011); arXiv: 0910.5391v1 [quant-ph].

    Article  MATH  MathSciNet  Google Scholar 

  10. M. G. Ivanov, How to Understand Quantum Mechanics (Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, 2012) [in Russian], http://mezhpr.fizteh.ru/biblio/q-ivanov.html

    Google Scholar 

  11. W. Pauli, “Die allgemeinen Prinzipien der Wellenmechanik,” in Handbuch der Physik, Ed. by H. Geiger and K. Scheel (J. Springer, Berlin, 1933), Vol. 24, Part 1, pp. 83–272; Engl. transl.: General Principles of Quantum Mechanics (Springer, Berlin, 1980); see also: “Die allgemeinen Prinzipien der Wellenmechanik,” in Prinzipien der Quantentheorie I (Springer, Berlin, 1958), Handbuch der Physik, Ed. by S. Flügge, Vol. 5, Part 1, pp. 1–168.

    Google Scholar 

  12. V. S. Ol’khovskii, “On time as a quantum observable canonically conjugate to energy,” Usp. Fiz. Nauk 181(8), 859–866 (2011) [Phys. Usp. 54, 829–835 (2011)].

    Article  Google Scholar 

  13. V. V. Kozlov, “Square integrable solutions of the Klein-Gordon equation on the de Sitter space,” Usp. Mat. Nauk 42(4), 171 (1987).

    Google Scholar 

  14. I. V. Volovich and V. V. Kozlov, “Square integrable solutions to the Klein-Gordon equation on a manifold,” Dokl. Akad. Nauk 408(3), 317–320 (2006) [Dokl. Math. 73 (3), 441–444 (2006)].

    MathSciNet  Google Scholar 

  15. V. V. Kozlov and I. V. Volovich, “Mass spectrum, actons and cosmological landscape,” arXiv: hep-th/0612135.

  16. V. V. Kozlov and I. V. Volovich, “Finite action Klein-Gordon solutions on Lorentzian manifolds,” Int. J. Geom. Methods Mod. Phys. 3(7), 1349–1357 (2006); arXiv: gr-qc/0603111.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. D. Sakharov, “Cosmological transitions with changes in the signature of the metric,” Zh. Eksp. Teor. Fiz. 87(2), 375–383 (1984) [Sov. Phys., JETP 60 (2), 214–218 (1984)].

    Google Scholar 

  18. I. Ya. Aref’eva and I. V. Volovich, “Supersymmetry: Kaluza-Klein theory, anomalies, and superstrings,” Usp. Fiz. Nauk 146(4), 655–681 (1985) [Sov. Phys., Usp. 28 (8), 694–708 (1986)].

    Article  Google Scholar 

  19. I. Ya. Aref’eva, I. V. Volovich, and B. G. Dragovich, “Spontaneous reduction in multidimensional (D = 10, 11) supergravity theories with arbitrary signature,” Teor. Mat. Fiz. 70(3), 422–431 (1987) [Theor. Math. Phys. 70, 297–304 (1987)].

    MathSciNet  Google Scholar 

  20. L. A. Khalfin, “On the theory of the decay of a quasi-stationary state,” Dokl. Akad. Nauk SSSR 115(2), 277–280 (1957) [Sov. Phys., Dokl. 2, 340–344 (1957)].

    Google Scholar 

  21. L. A. Khalfin, “Contribution to the decay theory of a quasi-stationary state,” Zh. Eksp. Teor. Fiz. 33(6), 1371–1382 (1958) [Sov. Phys., JETP 6, 1053–1063 (1958)].

    Google Scholar 

  22. L. A. Khalfin, “Quantum theory of decay of physical systems,” Extended Abstract of Cand. Sci. (Phys.-Math.) Dissertation (Lebedev Phys. Inst., USSR Acad. Sci., Moscow, 1960).

    Google Scholar 

  23. J. Von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, Princeton, 1955; Nauka, Moscow, 1964).

    MATH  Google Scholar 

  24. H. Everett, “‘Relative state’ formulation of quantum mechanics,” Rev. Mod. Phys. 29, 454–462 (1957).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Ivanov.

Additional information

Original Russian Text © M.G. Ivanov, 2014, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2014, Vol. 285, pp. 154–165.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, M.G. Formulation of quantum mechanics with dynamical time. Proc. Steklov Inst. Math. 285, 145–156 (2014). https://doi.org/10.1134/S0081543814040117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543814040117

Keywords

Navigation