A model of relativistic dynamics

  • V. V. ZharinovEmail author


A model of relativistic dynamics is proposed for classical (nonquantum) multiparticle systems within the Lagrangian formalism on the space of world lines.


STEKLOV Institute Lagrange Equation Homogeneity Condition Relativistic Dynamic World Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. C. G. Stueckelberg, “Remarque à propos de la création de paires de particules en théorie de relativité,” Helv. Phys. Acta 14, 588–594 (1941).MathSciNetGoogle Scholar
  2. 2.
    E. C. G. Stueckelberg, “La mécanique du point matériel en théorie de relativité et en théorie des quanta,” Helv. Phys. Acta 15, 23–37 (1942).MathSciNetGoogle Scholar
  3. 3.
    R. P. Feynman, “The development of the space-time view of quantum electrodynamics,” Phys. Today 19(8), 31–44 (1966).CrossRefGoogle Scholar
  4. 4.
    L. P. Horwitz and C. Piron, “Relativistic dynamics,” Helv. Phys. Acta 46, 316–326 (1973).Google Scholar
  5. 5.
    J. R. Fanchi, Parametrized Relativistic Quantum Theory (Kluwer, Dordrecht, 1993).CrossRefGoogle Scholar
  6. 6.
    L. P. Horwitz, “Time and the evolution of states in relativistic classical and quantum mechanics,” arXiv: hepph/9606330.Google Scholar
  7. 7.
    J. R. Fanchi, “Manifestly covariant quantum theory with invariant evolution parameter in relativistic dynamics,” Found. Phys. 41, 4–32 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry: Methods and Applications (Nauka, Moscow, 1979; Springer, New York, 1990).Google Scholar
  9. 9.
    V. A. Fock, The Theory of Space, Time and Gravitation (Gostekhizdat, Moscow, 1955; Pergamon Press, Oxford, 1963).Google Scholar
  10. 10.
    L. D. Landau and E. M. Lifshitz, Theoretical Physics, Vol. 2: Field Theory (Fizmatgiz, Moscow, 1962); Engl. transl.: Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Pergamon, Paris, 1962).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations