Skip to main content
Log in

Weighted moments of the limit of a branching process in a random environment

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Let (Z n ) be a supercritical branching process in an independent and identically distributed random environment ζ = (ζ 0, ζ 1,…), and let W be the limit of the normalized population size Z n /\(\mathbb{E}\)(Z n |ζ). We show a necessary and sufficient condition for the existence of weighted moments of W of the form \(\mathbb{E}\), where α ≥ 1 and ℓ is a positive function slowly varying at ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Afanasyev, “On the maximum of a subcritical branching process in a random environment,” Stoch. Processes Appl. 93, 87–107 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Alsmeyer and A. Iksanov, “A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks,” Electron. J. Probab. 14, 289–313 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Alsmeyer and D. Kuhlbusch, “Double martingale structure and existence of ϕ-moments for weighted branching processes,” Münster J. Math. 3, 163–212 (2010).

    MathSciNet  MATH  Google Scholar 

  4. G. Alsmeyer and U. Rösler, “On the existence of ϕ-moments of the limit of a normalized supercritical Galton-Watson process,” J. Theor. Probab. 17, 905–928 (2004).

    Article  MATH  Google Scholar 

  5. K. B. Athreya and S. Karlin, “On branching processes with random environments. I: Extinction probabilities,” Ann. Math. Stat. 42, 1499–1520 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  6. K. B. Athreya and S. Karlin, “On branching processes with random environments. II: Limit theorems,” Ann. Math. Stat. 42, 1843–1858 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  7. K. B. Athreya and P. E. Ney, Branching Processes (Springer, Berlin, 1972).

    Book  MATH  Google Scholar 

  8. L. E. Baum and M. Katz, “Convergence rates in the law of large numbers,” Trans. Am. Math. Soc. 120, 108–123 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  9. N. H. Bingham and R. A. Doney, “Asymptotic properties of supercritical branching processes. I: The Galton-Watson process,” Adv. Appl. Probab. 6, 711–731 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  10. N. H. Bingham and R. A. Doney, “Asymptotic properties of supercritical branching processes. II: Crump-Mode and Jirina processes,” Adv. Appl. Probab. 7, 66–82 (1975).

    Article  MathSciNet  Google Scholar 

  11. N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation (Cambridge Univ. Press, Cambridge, 1987).

    Book  MATH  Google Scholar 

  12. Y. S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales (Springer, New York, 1995).

    Google Scholar 

  13. P. Erdős, “On a theorem of Hsu and Robbins,” Ann. Math. Stat. 20, 286–291 (1949).

    Article  Google Scholar 

  14. Y. Guivarc’h and Q. Liu, “Propriétés asymptotiques des processus de branchement en environnement aléatoire,” C. R. Acad. Sci. Paris, Ser. 1: Math. 332, 339–344 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  15. T. E. Harris, The Theory of Branching Processes (Springer, Berlin, 1963).

    Book  MATH  Google Scholar 

  16. C. C. Heyde, “Two probability theorems and their application to some first passage problems,” J. Aust. Math. Soc. 4, 214–222 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  17. C. C. Heyde, “Some renewal theorems with application to a first passage problem,” Ann. Math. Stat. 37, 699–710 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  18. P. L. Hsu and H. Robbins, “Complete convergence and the law of large numbers,” Proc. Natl. Acad. Sci. USA 33, 25–31 (1947).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. M. Iksanov, “On some moments of the limit random variable for a normalized supercritical Galton-Watson process,” in Focus on Probability Theory, Ed. by L. R. Velle (Nova Sci. Publ., New York, 2006), pp. 127–134.

    Google Scholar 

  20. A. M. Iksanov and U. Rösler, “Some moment results about the limit of a martingale related to the supercritical branching random walk and perpetuities,” Ukr. Math. J. 58, 505–528 (2006).

    Article  Google Scholar 

  21. H. Kesten and R. A. Maller, “Two renewal theorems for general random walks tending to infinity,” Probab. Theory Relat. Fields 106, 1–38 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Kesten and B. P. Stigum, “A limit theorem for multidimensional Galton-Watson processes,” Ann. Math. Stat. 37, 1211–1223 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Kuhlbusch, “On weighted branching processes in random environment,” Stoch. Processes Appl. 109, 113–144 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  24. X. Liang and Q. Liu, “Weighted moments for Mandelbrot’s martingales in random environments,” Preprint (Univ. Bretagne-Sud, UMR 6205, LMBA, Vannes, 2013).

    Google Scholar 

  25. D. Tanny, “A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means,” Stoch. Processes Appl. 28, 123–139 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  26. V. A. Topchii and V. A. Vatutin, “Maximum of the critical Galton-Watson processes and left-continuous random walks,” Teor. Veroyatn. Primen. 42(1), 21–34 (1997) [Theory Probab. Appl. 42, 17–27 (1998)].

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingang Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, X., Liu, Q. Weighted moments of the limit of a branching process in a random environment. Proc. Steklov Inst. Math. 282, 127–145 (2013). https://doi.org/10.1134/S0081543813060126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543813060126

Keywords

Navigation