Skip to main content
Log in

Abstract

We consider dynamical problems arising in connection with the interaction of an absolutely rigid ball and a viscoelastic support plane. The support is a relatively stiff viscoelastic Kelvin-Voigt medium that coincides with the horizontal plane in the undeformed state. We also assume that under the deformation the support induces dry friction forces that are locally governed by the Coulomb law. We study the impact appearing when a ball falls on the plane. Another problem of our interest is the motion of a ball “along the plane.” A detailed analysis of various stages of the motion is presented. We also compare this model with classical models of interaction of solid bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Andronov and V. Ph. Zhuravlev, Dry Friction in Problems of Mechanics (Regular and Chaotic Dynamics, Izhevsk, 2010) [in Russian].

    Google Scholar 

  2. L. A. Galin, Contact Problems: The Legacy of L.A. Galin, Ed. by G. M. L. Gladwell (Springer, Dordrecht, 2008).

  3. I. G. Goryacheva, Mechanics of Frictional Interaction (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  4. A. Yu. Ishlinsky, “Rolling friction,” Prikl. Mat. Mekh. 2(2), 245–260 (1938).

    Google Scholar 

  5. A. Yu. Ishlinsky, “Theory of resistance to rolling (rolling friction) and related phenomena,” in All-Union Conf. on Friction and Wear in Machines (Akad. Nauk SSSR, Moscow, 1940), Vol. 2, pp. 255–264 [in Russian].

    Google Scholar 

  6. A. Yu. Ishlinsky, “On partial slip in rolling contact,” Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, No. 6, 3–15 (1956).

    Google Scholar 

  7. M. V. Ishkhanyan and A. V. Karapetyan, “Dynamics of a homogeneous ball on a horizontal plane with sliding, spinning, and rolling friction taken into account,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 3–14 (2010) [Mech. Solids 45, 155–165 (2010)].

    Google Scholar 

  8. A. V. Karapetyan, “A two-parameter friction model,” Prikl. Mat. Mekh. 73(4), 515–519 (2009) [J. Appl. Math. Mech. 73, 367–370 (2009)].

    MathSciNet  Google Scholar 

  9. A. V. Karapetyan, “Modelling of frictional forces in the dynamics of a sphere on a plane,” Prikl. Mat. Mekh. 74(4), 531–535 (2010) [J. Appl. Math. Mech. 74, 380–383 (2010)].

    MathSciNet  Google Scholar 

  10. A. A. Kireenkov, “Coupled models of sliding and rolling friction,” Dokl. Akad. Nauk 419(6), 759–762 (2008) [Dokl. Phys. 53, 233–236 (2008)].

    MathSciNet  Google Scholar 

  11. A. S. Kuleshov, D. V. Treschev, T. B. Ivanova, and O. S. Naimushina, “A rigid cylinder on a viscoelastic plane,” Nelinein. Din. 7(3), 601–625 (2011).

    Google Scholar 

  12. T. Levi-Civita and U. Amaldi, Lezioni di meccanica razionale (N. Zanichelli, Bologna, 1951, 1952), Vol. 2.

    MATH  Google Scholar 

  13. A. P. Markeev, Dynamics of a Body Touching a Rigid Surface (Regular and Chaotic Dynamics, Izhevsk, 2011) [in Russian].

    Google Scholar 

  14. Nonholonomic Dynamical Systems: Integrability, Chaos, and Strange Attractors, Ed. by A. V. Borisov and I. S. Mamaev (Inst. Comput. Res., Moscow, 2002) [in Russian].

    Google Scholar 

  15. Ju. I. Neimark and N. A. Fufaev, Dynamics of Nonholonomic Systems (Am. Math. Soc., Providence, RI, 1972), Transl. Math. Monogr. 33.

    MATH  Google Scholar 

  16. E. J. Routh, A Treatise on the Dynamics of a System of Rigid Bodies (Macmillan, London, 1905), Parts 1, 2.

    MATH  Google Scholar 

  17. O. S. Sentemova, “Multicomponent models of friction,” Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 6, 57–59 (2011) [Moscow Univ. Mech. Bull. 66 (6), 138–140 (2011)].

    Google Scholar 

  18. S. A. Chaplygin, Studies on the Dynamics of Nonholonomic Systems (Gostekhteorizdat, Moscow, 1949); 2nd ed. (URSS, Moscow, 2007) [in Russian].

    Google Scholar 

  19. F. Al-Bender and K. De Moerlooze, “Characterization and modeling of friction and wear: an overview,” Sustainable Constr. Des. 2(1), 19–28 (2011).

    Google Scholar 

  20. P. Contensou, “Couplage entre frottement de glissement et frottement de pivotement dans la théorie de la toupie,” in Kreiselprobleme/Gyrodynamics: Proc. Symp., Celerina, 1962 (Springer, Berlin, 1963), pp. 201–216.

    Google Scholar 

  21. Th. Erismann, “Theorie und Anwendungen des echten Kugelgetriebes,” Z. Angew. Math. Phys. 5(5), 355–388 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Hertz, “Ueber die Berührung fester elastischer Körper,” J. Reine Angew. Math. 92, 156–171 (1882).

    MATH  Google Scholar 

  23. T. Pöschel, N. V. Brilliantov, and A. Zaikin, “Bistability and noise-enhanced velocity of rolling motion,” Europhys. Lett. 69, 371–377 (2005).

    Article  Google Scholar 

  24. T. Pöschel, T. Schwager, and N. V. Brilliantov, “Rolling friction of a hard cylinder on a viscous plane,” Eur. Phys. J. B 10, 169–174 (1999).

    Article  Google Scholar 

  25. T. Pöschel, T. Schwager, N. V. Brilliantov, and A. Zaikin, “Rolling friction and bistability of rolling motion,” in Powders and Grains 2005: Proc. 5th Int. Conf. on Micromechanics of Granular Media, Stuttgart, 2005 (Taylor & Francis, London, 2005), Vol. 2, pp. 1247–1253.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2013, Vol. 281, pp. 98–126.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zobova, A.A., Treschev, D.V. Ball on a viscoelastic plane. Proc. Steklov Inst. Math. 281, 91–118 (2013). https://doi.org/10.1134/S0081543813040093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543813040093

Keywords

Navigation