Scientific achievements of Anatolii Alekseevich Karatsuba

  • M. E. Changa
  • S. A. Gritsenko
  • E. A. Karatsuba
  • M. A. Korolev
  • I. S. Rezvyakova
  • D. I. Tolev
Article

References

  1. 1.
    A. A. Karatsuba, “Solution of a problem of the theory of finite automata,” Uspekhi Mat. Nauk 15(3), 157–159 (1960).MATHGoogle Scholar
  2. 2.
    A. A. Karatsuba and Yu. P. Ofman, “Multiplication of set-valued numbers by automata,” Dokl. Akad. Nauk SSSR 145(2), 293–294 (1962).Google Scholar
  3. 3.
    J.-P. Delahaye, “Mathematiques et philosophie,” Pour Sci. 277, 100–104 (2000).Google Scholar
  4. 4.
    A. A. Karatsuba, List of Scientific Publications, http://www.mi.ras.ru/~karatsuba/list.html.
  5. 5.
    A. A. Karatsuba, Foundations of Analytic Number Theory (Nauka, Moscow, 1975) [in Russian].Google Scholar
  6. 6.
    G. I. Arkhipov, A. A. Karatsuba, and V. N. Chubarikov, Theory of Multiple Trigonometric Sums (Nauka, Moscow, 1987) [in Russian].MATHGoogle Scholar
  7. 7.
    S.M. Voronin and A. A. Karatsuba, The Riemann Zeta-Function (Fizmatlit, Moscow, 1994) [in Russian].MATHGoogle Scholar
  8. 8.
    A. A. Karatsuba, Complex Analysis in Number Theory (CRC Press, Boca Raton, Fl., 1995).MATHGoogle Scholar
  9. 9.
    G. I. Arkhipov, V. N. Chubarikov, and A. A. Karatsuba, Trigonometric Sums in Number Theory and Analysis (Walter de Gruyter, Berlin, 2004).MATHGoogle Scholar
  10. 10.
    G. I. Arkhipov and V. N. Chubarikov, “On professor A.A. Karatsuba’s works inmathematics” Tr.Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 218, 7–19 (1997) [Proc. Steklov Inst.Math. 218, 1–14 (1997)].Google Scholar
  11. 11.
    E. F. Moore, “Gedanken-experiments on sequential machines,” in Automata Studies (Princeton Univ. Press, Princeton, N.J., 1956), pp. 129–153.Google Scholar
  12. 12.
    A. Karacuba, “Berechnungen und die Kompliziertheit von Beziehungen,” Elektron. Inform.-verarb. Kybernetik 11, 603–606 (1975).Google Scholar
  13. 13.
    A. A. Karatsuba, “The complexity of computations” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 211, 186–202 (1995) [Proc. Steklov Inst. Math. 211, 169–183 (1995)].MathSciNetGoogle Scholar
  14. 14.
    D. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms (Addison-Wesley, Reading, Mass., 1969; Mir, Moscow, 2000).Google Scholar
  15. 15.
    A. Schönhage and V. Strassen, “Schnelle Multiplikation großer Zahlen,” Computing 7(3–4), 281–292 (1971).MATHCrossRefGoogle Scholar
  16. 16.
    V. Strassen, “Gaussian elimination is not optimal,” Numer.Math. 13(4), 354–356 (1969).MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    A. A. Karatsuba, “Estimates of trigonometric sums of a special form and their applications,” Dokl. Akad. Nauk SSSR 137(3), 513–514 (1961).MathSciNetGoogle Scholar
  18. 18.
    A. A. Karatsuba, “An analogue of Waring’s problem,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 1, 38–46 (1962).Google Scholar
  19. 19.
    A. A. Karatsuba, “Distribution of fractional parts of polynomials of a special type,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 3, 34–39 (1962).Google Scholar
  20. 20.
    A. A. Karatsuba, “Waring’s problem for a congruence modulo the power of a prime,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 4, 28–38 (1962).Google Scholar
  21. 21.
    A. A. Karatsuba and N. M. Korobov, “A mean-value theorem,” Dokl. Akad. Nauk SSSR 149(2), 245–248 (1963).MathSciNetGoogle Scholar
  22. 22.
    A. A. Karatsuba, “Trigonometric sums of a special type and their applications,” Izv. Akad. Nauk SSSR, Ser. Mat. 28(1), 237–248 (1964).MathSciNetMATHGoogle Scholar
  23. 23.
    A. A. Karatsuba, “On estimation of the number of solutions of certain equations,” Dokl. Akad. Nauk SSSR 165(1), 31–32 (1965).MathSciNetGoogle Scholar
  24. 24.
    A. A. Karatsuba, “On systems of congruences,” Izv. Akad. Nauk SSSR, Ser. Mat. 29(4), 935–944 (1965).MathSciNetMATHGoogle Scholar
  25. 25.
    A. A. Karatsuba, “Theorems on the mean and complete trigonometric sums,” Izv. Akad. Nauk SSSR, Ser. Mat. 30(1), 183–206 (1966).MathSciNetMATHGoogle Scholar
  26. 26.
    A. A. Karatsuba, TheMethod of Trigonometric Sums andMean-Value Theorems, Doctoral Dissertation in Physics and Mathematics (SteklovMath. Inst., Ross. Akad. Sci., Moscow, 1966).Google Scholar
  27. 27.
    A. A. Karatsuba, “The method of trigonometric sums and theorems of the mean,” Mat. Zametki 1(1), 99–110 (1967) [Math. Notes, 1 (1), 64–71 (1967)].MathSciNetGoogle Scholar
  28. 28.
    A. A. Karatsuba, “The mean value of the modulus of a trigonometric sum,” Izv. Akad. Nauk SSSR, Ser. Mat. 37(6), 1203–1227 (1973) [Math. USSR-Izv., 37 (6), 1203–1227 (1973)].MathSciNetMATHGoogle Scholar
  29. 29.
    G. I. Arkhipov, A. A. Karatsuba, and V. N. Chubarikov, “An upper bound of the modulus of a multiple trigonometric sum,” Tr.Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 143, 3–31 (1977) [Proc. Steklov Inst. Math. 143, 1–31 (1980)].Google Scholar
  30. 30.
    G. I. Arkhipov, A. A. Karatsuba, and V. N. Chubarikov, “Multiple trigonometric sums,” in Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 151, 3–128 (1980) [Proc. Steklov Inst. Math. 151 (2), 1–126 (1982)].MathSciNetGoogle Scholar
  31. 31.
    G. I. Arkhipov, A. A. Karatsuba, and V. N. Chubarikov, “Multiple trigonometric sums and their applications,” Izv. Akad. Nauk SSSR, Ser. Mat. 44(4), 723–781 (1980) [Math. USSR-Izv. 17 (1), 1–54 (1981)].MathSciNetMATHGoogle Scholar
  32. 32.
    G. I. Arkhipov, A. A. Karatsuba, and V. N. Chubarikov, “Special cases of the theory of multiple trigonometric sums,” Izv. Akad. Nauk SSSR, Ser. Mat. 47(4), 707–784 (1983) [Math. USSR-Izv. 23 (1), 17–82 (1984)].MathSciNetMATHGoogle Scholar
  33. 33.
    I.M. Vinogradov and A. A. Karatsuba, “Themethod of trigonometric sums in number theory,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 168, 4–30 (1984) [Proc. Steklov Inst. Math. 168, 3–30 (1986)].MathSciNetMATHGoogle Scholar
  34. 34.
    U. V. Linnik, “On Weyl’s sums,” Mat. Sb. 12(1), 28–39 (1943).MathSciNetGoogle Scholar
  35. 35.
    G. I. Arkhipov, “Mean-value theorem for the modulus of multiple trigonometric sums,” Mat. Zametki 17(1), 143–153 (1975) [Math. Notes 17 (1), 84–90 (1975)].MathSciNetGoogle Scholar
  36. 36.
    G. I. Arkhipov, A. A. Karatsuba, and V. N. Chubarikov, “Trigonometric integrals,” Izv. Akad. Nauk SSSR, Ser. Mat. 43(5), 971–1003 (1979) [Math. USSR-Izv. 15 (2), 211–239 (1980)].MathSciNetGoogle Scholar
  37. 37.
    I.M. Vinogradov, Selected Works (Akad. Nauk SSSR, Moscow, 1952) [in Russian].MATHGoogle Scholar
  38. 38.
    M. A. Chakhkiev, “On the convergence exponent of the singular integral in the multi-dimensional analogue of Tarry’s problem,” Izv. Ross. Akad. Nauk, Ser. Mat. 67(2), 211–224 (2003) [Izv.: Math. 67 (2), 405–418 (2003)].MathSciNetGoogle Scholar
  39. 39.
    A. A. Karatsuba, “On the function G(n) in Waring’s problem,” Izv. Akad. Nauk SSSR, Ser. Mat. 49(5), 935–947 (1985) [Math. USSR-Izv. 27 (2), 239–249 (1986)].MathSciNetMATHGoogle Scholar
  40. 40.
    G. I. Arkhipov and A. A. Karatsuba, “On local representation of zero by a form,” Izv. Akad. Nauk SSSR, Ser. Mat. 45(5), 948–961 (1981) [Math. USSR-Izv. 19 (2), 231–240 (1982)].MathSciNetMATHGoogle Scholar
  41. 41.
    A. A. Karatsuba, “Distribution of inverse values in a residue ring modulo a given number,” Dokl. Akad. Nauk 333(2), 138–139 (1993) [Dokl. Math. 48 (3), 452–454 (1994)].Google Scholar
  42. 42.
    A. A. Karatsuba, “Fractional parts of functions of a special form,” Izv. Ross. Akad. Nauk, Ser. Mat. 59(4), 61–80 (1995) [Izv.: Math. 59 (4), 721–740 (1995)].MathSciNetGoogle Scholar
  43. 43.
    A. A. Karatsuba, “Analogues of Kloosterman sums,” Izv. Ross. Akad. Nauk, Ser. Mat. 59(5), 93–102 (1995) [Izv.: Math. 59 (5), 971–981 (1995)].MathSciNetGoogle Scholar
  44. 44.
    A. A. Karatsuba, “Analogues of incomplete Kloosterman sums and their applications,” Tatra Mt. Math. Publ. 11, 89–120 (1997).MathSciNetMATHGoogle Scholar
  45. 45.
    A. A. Karatsuba, “Kloosterman double sums,” Mat. Zametki 66(5), 682–687 (1999) [Math. Notes 66 (5), 565–569 (1999)].MathSciNetCrossRefGoogle Scholar
  46. 46.
    J. Friedlander and H. Iwaniec, “The Brun-Titchmarsh theorem,” in Analytic Number Theory (Cambridge Univ. Press, Cambridge, 1997), pp. 85–93.CrossRefGoogle Scholar
  47. 47.
    J. Friedlander and H. Iwaniec, “The polynomial X 2 + Y 4 captures its primes,” Ann. Math. (2) 148(3), 945–1040 (1998).MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    D. R. Heath-Brown, “The largest prime factor of x 3 + 2,” Proc. London Math. Soc. (3) 82(3), 554–596 (2001).MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    A. A. Glibichuk, “Combinational properties of sets of residues modulo a prime and the Erdős-Graham problem,” Mat. Zametki 79(3), 384–395 (2006) [Math. Notes 79 (3), 356–365 (2006)].MathSciNetCrossRefGoogle Scholar
  50. 50.
    A. A. Karatsuba, “On the zeros of the function ζ(s) on short intervals of the critical line,” Izv. Akad. Nauk SSSR, Ser.Mat. 48(3), 569–584 (1984) [Math. USSR-Izv. 24 (3), 523–537 (1984)].MathSciNetMATHGoogle Scholar
  51. 51.
    A. A. Karatsuba, “The distribution of zeros of the function ζ(1/2 + it),” Izv. Akad. Nauk SSSR, Ser. Mat. 48(6), 1214–1224 (1984) [Math. USSR-Izv. 25 (3), 519–529 (1985)].MathSciNetMATHGoogle Scholar
  52. 52.
    A. A. Karatsuba, “Zeros of the Riemann zeta function on the critical line,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 167, 167–178 (1985) [Proc. Steklov Inst. Math. 167, 187–200 (1986)].MathSciNetMATHGoogle Scholar
  53. 53.
    A. Selberg, “On the zeros of Riemann’s zeta function,” Skr. Norske Vid. Akad. Oslo I 10, 1–59 (1942).Google Scholar
  54. 54.
    A. A. Karatsuba, “On the number of zeros of the Riemann zeta-function lying in almost all short intervals of the critical line,” Izv. Ross. Akad. Nauk, Ser. Mat. 56(2), 372–397 (1992) [Izv.: Math. 40 (2), 353–376 (1993)].MATHGoogle Scholar
  55. 55.
    G. H. Hardy and J. E. Littlewood, “Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes,” Acta Math. 41(1), 119–196 (1916).MathSciNetCrossRefGoogle Scholar
  56. 56.
    J. Moser, “A certain sum in the theory of the Riemann zeta-function,” Acta Arith. 31(1), 31–43 (1976); “On a Hardy-Littlewood theorem in the theory of the Riemann zeta-function,” Acta Arith. 31 (1), 45–51 (1976); “Supplement: ‘On a Hardy-Littlewood theorem in the theory of the Riemann zeta-function’,” Acta Arith. 35 (4), 403–404 (1979); “Corrections to: ‘A certain sum in the theory of the Riemann zeta-function’ [Acta Arith. 31 (1976), no. 1, 31–43]; ‘On a Hardy-Littlewood theorem in the theory of the Riemann zetafunction” [ibid. 31 (1976), no. 1, 4551]; Supplement [ibid. 35 (1979), no. 4, 403404],” Acta Arith. 40 (1), 97–107 (1981).MathSciNetMATHGoogle Scholar
  57. 57.
    A. A. Karatsuba, “On the distance between consecutive zeros of the Riemann zeta function that lie on the critical line,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 157, 49–63 (1981).MathSciNetMATHGoogle Scholar
  58. 58.
    A. A. Karatsuba, “The Riemann zeta function and its zeros,” Uspekhi Mat. Nauk 40(5), 19–70 (1985) [Russ. Math. Surveys 40 (5), 23–82 (1985)].MathSciNetMATHGoogle Scholar
  59. 59.
    A. A. Lavrik, “Uniform approximations and zeros in short intervals of the derivatives of the Hardy Z-function,” Anal. Math. 17(4), 257–279 (1991).MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    A. Selberg, “Contributions to the theory of the Riemann zeta-function,” Arch. Math. Naturvid. 48(5), 89–155 (1946).MathSciNetMATHGoogle Scholar
  61. 61.
    A. A. Karatsuba, “Density theorem and the behavior of the argument of the Riemann zeta function,” Mat. Zametki 60(3), 448–449 (1996) [Math. Notes 60 (3), 333–334 (1996)].MathSciNetCrossRefGoogle Scholar
  62. 62.
    A. A. Karatsuba, “On the function S(t),” Izv. Ross. Akad. Nauk, Ser. Mat. 60(5), 27–56 (1996) [Izv.: Math. 60 (5), 901–931 (1996)].MathSciNetGoogle Scholar
  63. 63.
    A. A. Karatsuba, “Omega theorems for zeta sums,” Mat. Zametki 73(2), 228–233 (2003) [Math. Notes 73 (2), 212–217 (2003)].MathSciNetCrossRefGoogle Scholar
  64. 64.
    A. A. Karatsuba, “On the zeros of the Davenport-Heilbronn function lying on the critical line,” Izv. Akad. Nauk SSSR, Ser. Mat. 54(2), 303–315 (1990) [Math. USSR-Izv. 36 (2), 311–324 (1991)].MATHGoogle Scholar
  65. 65.
    H. Davenport and H. Heilbronn, “On the zeros of certain Dirichlet series,” J. London Math. Soc. 11(3), 181–185 (1936); “On the zeros of certain Dirichlet series. II,” J. London Math. Soc. 11 (4), 307–312 (1936).MathSciNetCrossRefGoogle Scholar
  66. 66.
    S.M. Voronin, “On the zeros of some Dirichlet series lying on the critical line,” Izv. Akad. Nauk SSSR, Ser. Mat. 44(1), 63–91 (1980) [Math. USSR-Izv. 16 (1), 55–82 (1981)].MathSciNetMATHGoogle Scholar
  67. 67.
    A. A. Karatsuba, “On zeros of the Davenport-Heilbronn function,” in Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, Italy, 1989) (Univ. Salerno, Salerno, 1992), pp. 271–293.Google Scholar
  68. 68.
    A. A. Karatsuba, “A refinement of theorems on the number of zeros lying on intervals of the critical line of certain Dirichlet series,” Uspekhi Mat. Nauk 47(2), 193–194 (1992) [Russ. Math. Surveys 47 (2), 219–220 (1992)].MathSciNetGoogle Scholar
  69. 69.
    A. A. Karatsuba, “On the zeros of a special type of function connected with Dirichlet series,” Izv. Akad. Nauk SSSR, Ser. Mat. 55(3), 483–514 (1991) [Math. USSR-Izv. 38 (3), 471–502 (1992)].MATHGoogle Scholar
  70. 70.
    A. A. Karatsuba, “Uniform approximation of the remainder term in the Dirichlet divisor problem,” Izv. Akad. Nauk SSSR, Ser. Mat. 36(3), 475–483 (1972) [Math. USSR-Izv. 6 (3), 467–475 (1972)].MathSciNetMATHGoogle Scholar
  71. 71.
    E. C. Titchmarsh, The Theory of the Riemann Zeta-Function (Clarendon, Oxford, 1951; Inostrannaya Literatura, Moscow, 1953).MATHGoogle Scholar
  72. 72.
    H.-E. Richert, “Einführung in die Theorie der starken Rieszschen Summierbarkeit von Dirichletreihen,” Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1960, 17–75 (1960).Google Scholar
  73. 73.
    A. A. Karatsuba, “The multidimensional Dirichlet divisor problem and zero free regions for the Riemann zeta function,” Funct. Approx. Comment. Math. 28, 131–140 (2000).MathSciNetMATHGoogle Scholar
  74. 74.
    A. A. Karatsuba, “On the relationship between the multidimensional Dirichlet divisor problem and the boundary of zeros of ζ(s),” Mat. Zametki 70(3), 477–480 (2001) [Math. Notes 70 (3), 432–435 (2001)].MathSciNetCrossRefGoogle Scholar
  75. 75.
    A. A. Karatsuba, “Lower bounds for the maximum modulus of ζ(s) in small domains of the critical strip,” Mat. Zametki 70(5), 796–797 (2001) [Math. Notes 70 (5), 724–726 (2001)].MathSciNetCrossRefGoogle Scholar
  76. 76.
    A. A. Karatsuba, “Lower bounds for the maximummodulus of the Riemann zeta function on short segments of the critical line,” Izv. Ross. Akad. Nauk, Ser. Mat. 68(6), 99–104 (2004) [Izv.: Math. 68 (6), 1157–1163 (2004)].MathSciNetGoogle Scholar
  77. 77.
    R. Balasubramanian, “On the frequency of Titchmarsh’s phenomenon for ζ(s), IV,” Hardy-Ramanujan J. 9, 1–10 (1986).MathSciNetMATHGoogle Scholar
  78. 78.
    A. A. Karatsuba, “Sums of characters and primitive roots in finite fields,” Dokl. Akad. Nauk SSSR 180(6), 1287–1289 (1968).MathSciNetGoogle Scholar
  79. 79.
    A. A. Karatsuba, “Estimates of character sums,” Izv. Akad. Nauk SSSR, Ser. Mat. 34(1), 20–30 (1970) [Math. USSR-Izv. 4 (1), 19–29 (1970)].MathSciNetGoogle Scholar
  80. 80.
    A. A. Karatsuba, “Sums of characters over prime numbers,” Izv. Akad. Nauk SSSR, Ser. Mat. 34(2), 299–321 (1970) [Math. USSR-Izv. 4 (2), 303–326 (1970)].MathSciNetGoogle Scholar
  81. 81.
    I. M. Vinogradov, “An Estimate for a certain sum extended over the primes of an arithmetic progression,” Izv. Akad. Nauk SSSR, Ser. Mat. 30(3), 481–496 (1966).MathSciNetMATHGoogle Scholar
  82. 82.
    A. A. Karatsuba, “Sums of characters in sequences of shifted prime numbers, with applications,” Mat. Zametki 17(1), 155–159 (1975) [Math. Notes 17 (1), 91–93 (1975)].MathSciNetGoogle Scholar
  83. 83.
    A. A. Karatsuba, “The distribution of products of shifted prime numbers in arithmetic progressions,” Dokl. Akad. Nauk SSSR 192(4), 724–727 (1970).MathSciNetGoogle Scholar
  84. 84.
    A. A. Karatsuba, “Lower estimates of sums of polynomial characters,” Mat. Zametki 14(1), 67–72 (1973) [Math. Notes 14 (1), 593–596 (1973)].MathSciNetMATHGoogle Scholar
  85. 85.
    A. A. Karatsuba, “Sums of Legendre symbols of polynomials of second degree over prime numbers,” Izv. Akad. Nauk SSSR, Ser. Mat. 42(2), 315–324 (1978) [Math. USSR-Izv. 12 (2), 299–308 (1978)].MathSciNetMATHGoogle Scholar
  86. 86.
    A. A. Karatsuba, “Distribution of values of nonprincipal characters,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 142, 156–164 (1976) [Proc. Steklov Inst. Math. 142, 165–174 (1979)].Google Scholar
  87. 87.
    A. A. Karatsuba, “Weighted character sums,” Izv. Ross. Akad. Nauk, Ser. Mat. 64(2), 29–42 (2000) [Izv.: Math. 64 (2), 249–263 (2000)].MathSciNetGoogle Scholar
  88. 88.
    A. A. Karatsuba, “Distribution of values of Dirichlet characters on additive sequences,” Dokl. Akad. Nauk SSSR 319(3), 543–545 (1991) [Dokl. Math. 44 (1), 145–148 (1992)].Google Scholar
  89. 89.
    A. A. Karatsuba, “Sums of characters with prime numbers and their applications,” Tatra Mt. Math. Publ. 20, 155–162 (2000).MathSciNetMATHGoogle Scholar
  90. 90.
    A. A. Karatsuba, “Arithmetic problems in the theory of Dirichlet characters,” Uspekhi Mat. Nauk 63(4), 43–92 (2008) [Russ. Math. Surveys 63 (4), 641–690 (2008)].MathSciNetCrossRefGoogle Scholar
  91. 91.
    A. A. Karatsuba, “Approximation of exponential sums by shorter ones,” Proc. Indian Acad. Sci. Math. Sci. 97(1–3), 167–178 (1987).MathSciNetMATHGoogle Scholar
  92. 92.
    I. M. Vinogradov, “On the mean value of the number of classes of purely root forms of a negative determinant,” Soobshch. Kharkov. Mat. O-va 16(1–2), 10–38 (1918).Google Scholar
  93. 93.
    J. G. van der Corput, “Verschärfung der Abschätzung beim Teilerproblem,” Math. Ann. 87(1–2), 39–65 (1922).MathSciNetMATHCrossRefGoogle Scholar
  94. 94.
    A. A. Karatsuba and M. A. Korolev, “A theorem on the approximation of a trigonometric sum by a shorter one,” Izv. Ross. Akad. Nauk, Ser. Mat. 71(2), 123–150 (2007) [Izv.: Math. 71 (2), 341–370 (2007)].MathSciNetGoogle Scholar
  95. 95.
    A. A. Karatsuba and E. A. Karatsuba, “Applications of ATS in a quantum-optical model,” in Analysis and Mathematical Physics (Birkhäuser, Basel, 2009), pp. 211–232.CrossRefGoogle Scholar
  96. 96.
    A. A. Karatsuba and E. A. Karatsuba, “A resummation formula for collapse and revival in the Jaynes-Cummings model,” J. Phys. A: Math. Theor. 42(19), 195304 (2009).MathSciNetCrossRefGoogle Scholar
  97. 97.
    E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen (Teubner, Leipzig, 1909), Vol. 2.Google Scholar
  98. 98.
    M. E. Changa, “Numbers whose prime divisors lie in special intervals,” Izv. Ross. Akad. Nauk, Ser. Mat. 67(4), 213–224 (2003) [Izv.: Math. 67 (4), 837–848 (2003)].MathSciNetGoogle Scholar
  99. 99.
    A. A. Karatsuba, “On a property of the set of primes as a multiplicative basis of natural numbers,” Dokl. Akad. Nauk 439(2), 159–162 (2011) [Dokl. Math. 84 (1), 467–470 (2011)].Google Scholar
  100. 100.
    A. A. Karatsuba, “A property of the set of prime numbers,” Uspekhi Mat. Nauk 66(2), 3–14 (2011) [Russ. Math. Surveys 66 (2), 209–220 (2011)].MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • M. E. Changa
  • S. A. Gritsenko
  • E. A. Karatsuba
  • M. A. Korolev
  • I. S. Rezvyakova
  • D. I. Tolev

There are no affiliations available

Personalised recommendations