Skip to main content
Log in

Application of classical invariant theory to biholomorphic classification of plane curve singularities, and associated binary forms

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We use classical invariant theory to solve the biholomorphic equivalence problem for two families of plane curve singularities previously considered in the literature. Our calculations motivate an intriguing conjecture that proposes a method for extracting a complete set of invariants of homogeneous plane curve singularities from their moduli algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold, “Local Normal Forms of Functions,” Invent. Math. 35, 87–109 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Bass, “On the Ubiquity of Gorenstein Rings,” Math. Z. 82, 8–28 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  3. J. A. Dieudonné and J. B. Carrell, “Invariant Theory, Old and New,” Adv. Math. 4, 1–80 (1970).

    Article  MATH  Google Scholar 

  4. M. G. Eastwood, “Moduli of Isolated Hypersurface Singularities,” Asian J. Math. 8, 305–314 (2004).

    MathSciNet  MATH  Google Scholar 

  5. E. B. Elliott, An Introduction to the Algebra of Quantics (Clarendon Press, Oxford, 1895).

    Google Scholar 

  6. G. Fels, A. Isaev, W. Kaup, and N. Kruzhilin, “Isolated Hypersurface Singularities and Special Polynomial Realizations of Affine Quadrics,” J. Geom. Anal. 21, 767–782 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Fels and W. Kaup, “Nilpotent Algebras and Affinely Homogeneous Surfaces,” Math. Ann. 353, 1315–1350 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  8. G.-M. Greuel, C. Lossen, and E. Shustin, Introduction to Singularities and Deformations (Springer, Berlin, 2007), Springer Monogr. Math.

    MATH  Google Scholar 

  9. C. Huneke, “Hyman Bass and Ubiquity: Gorenstein Rings,” in Algebra, K-Theory, Groups, and Education: Proc. Conf., New York, 1997 (Am. Math. Soc., Providence, RI, 1999), Contemp. Math. 243, pp. 55–78.

    Google Scholar 

  10. A. V. Isaev, “On the Affine Homogeneity of Algebraic Hypersurfaces Arising from Gorenstein Algebras,” Asian J. Math. 15, 631–640 (2011).

    MathSciNet  MATH  Google Scholar 

  11. C. Kang, “Analytic Classification of Plane Curve Singularities Defined by Some Homogeneous Polynomials,” J. Korean Math. Soc. 30, 385–397 (1993).

    MathSciNet  MATH  Google Scholar 

  12. C. Kang and S. M. Kim, “Topological and Analytic Classification of Plane Curve Singularities Defined by z n + a(y)z + b(y) with Multiplicity n and Its Application,” J. Korean Math. Soc. 26, 181–188 (1989).

    MathSciNet  MATH  Google Scholar 

  13. H. Kraft, Geometrische Methoden in der Invariantentheorie (Vieweg, Braunschweig, 1984), Aspects Math. D1.

    Book  MATH  Google Scholar 

  14. J. N. Mather and S. S.-T. Yau, “Classification of Isolated Hypersurface Singularities by Their Moduli Algebras,” Invent. Math. 69, 243–251 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Mukai, An Introduction to Invariants and Moduli (Cambridge Univ. Press, Cambridge, 2003), Cambridge Stud. Adv. Math. 81.

    MATH  Google Scholar 

  16. D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory (Springer, Berlin, 1994), Ergebn. Math. Grenzgeb. 34.

    Book  Google Scholar 

  17. P. J. Olver, Classical Invariant Theory (Cambridge Univ. Press, Cambridge, 1999), LMS Stud. Texts 44.

    Book  MATH  Google Scholar 

  18. P. Orlik and L. Solomon, “Singularities. II: Automorphisms of Forms,” Math. Ann. 231, 229–240 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Saito, “Einfach-elliptische Singularitäten,” Invent. Math. 23, 289–325 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  20. V. Stepanović and A. Lipkovski, “Analytic Equivalence of Plane Curve Singularities y n+x α y+x β A(x)=0,” Publ. Inst. Math. (Beograd), Nouv. Sér. 81, 69–78 (2007).

  21. J. J. Sylvester, “Tables of the Generating Functions and Groundforms for the Binary Quantics of the First Ten Orders,” Am. J. Math. 2, 223–251 (1879); in The Collected Mathematical Papers (Cambridge Univ. Press, Cambridge, 1909), Vol. 3, pp. 283–311.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Isaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaev, A.V. Application of classical invariant theory to biholomorphic classification of plane curve singularities, and associated binary forms. Proc. Steklov Inst. Math. 279, 245–256 (2012). https://doi.org/10.1134/S0081543812080172

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543812080172

Keywords

Navigation