Skip to main content
Log in

Ultrafilters of measurable spaces as generalized solutions in abstract attainability problems

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider problems of asymptotic analysis that arise, in particular, in the formalization of effects related to an approximate observation of constraints. We study nonsequential (generally speaking) variants of asymptotic behavior that can be formalized in the class of ultrafilters of an appropriate measurable space. We construct attraction sets in a topological space that are realized in the class of ultrafilters of the corresponding measurable space and specify conditions under which ultrafilters of a measurable space are sufficient for constructing the “complete” attraction set corresponding to applying ultrafilters of the family of all subsets of the space of ordinary solutions. We study a compactification of this space that is constructed in the class of Stone ultrafilters (ultrafilters of a measurable space with an algebra of sets) such that the attraction set is realized as a continuous image of the compact set of generalized solutions; we also study the structure of this compact set in terms of free ultrafilters and ordinary solutions that observe the constraints of the problem exactly. We show that, in the case when there are no exact ordinary solutions, this compact set consists of free ultrafilters only; i.e., it is contained in the remainder of the compactifier (an example is given showing that the similar property may be absent for other variants of the extension of the original problem).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Chentsov, in Modern Mathematics and Its Applications (Inst. Kibernet. Akad. Nauk Gruzii, Tbilisi, 2005), Vol. 26, pp. 119–150 [in Russian].

    Google Scholar 

  2. A. G. Chentsov, Proc. Steklov Inst. Math., Suppl. 2, S20 (2004).

    MathSciNet  Google Scholar 

  3. A. G. Chentsov, in Control Theory and the Theory of Generalized Solutions of Hamilton-Jacobi Equations: Proc. Internat. Workshop (Izd. Ural. Gos. Univ., Yekaterinburg, 2006), Vol. 1, pp. 48–60 [in Russian].

    Google Scholar 

  4. A. G. Chentsov, Proc. Steklov Inst. Math., Suppl. 1, S48 (2006).

    Article  MathSciNet  Google Scholar 

  5. J. Warga, Optimal Control of Differential and Functional Equations (Academic, New York, 1972; Mir, Moscow, 1977).

    MATH  Google Scholar 

  6. R. J. Duffin, in Linear Inequalities and Related Systems (Princeton Univ. Press, Princeton, NJ, 1956; Inostrannaya Literatura, 1959), pp. 157–170 [pp. 263–267 of Russ. transl.].

    Google Scholar 

  7. E. G. Gol’shtein, Duality Theory in Mathematical Programming and Its Applications (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  8. A. G. Chentsov, Finitely Additive Measures and Relaxations of Extremal Problems (Plenum, New York, 1996).

    MATH  Google Scholar 

  9. A. G. Chentsov, Asymptotic Attainability (Kluwer Acad., Boston, 1997).

    MATH  Google Scholar 

  10. E. Čech, Topological Spaces (Academia, Prague, 1966).

    MATH  Google Scholar 

  11. R. Engelking, General Topology (PWN, Warsaw, 1983; Mir, Moscow, 1986).

    Google Scholar 

  12. J. L. Kelley, General Topology (Van Nostrand, Princeton, NJ, 1955; Nauka, Moscow, 1981).

    MATH  Google Scholar 

  13. N. Bourbaki, General Topology (Hermann, Paris, 1940; Nauka, Moscow, 1968).

    Google Scholar 

  14. N. N. Krasovskii, Theory of Motion Control (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  15. N. N. Krasovskii and A. I. Subbotin, Positional Differential Games (Nauka, Moscow, 1974) [in Russian].

    MATH  Google Scholar 

  16. N. N. Krasovskii, Control of a Dynamical System (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  17. A. G. Chentsov, Funct. Differ. Equ. 12, 119 (2005).

    MATH  MathSciNet  Google Scholar 

  18. A. G. Chentsov, Funct. Differ. Equ. 13, 381 (2006).

    MathSciNet  Google Scholar 

  19. J. Neveu, Mathematical Foundations of the Calculus of Probability (Holden Day, London, 1965; Mir, Moscow, 1969).

    MATH  Google Scholar 

  20. A. G. Chentsov and S. I. Morina, Extensions and Relaxations (Kluwer Acad., Dordrecht, 2002).

    MATH  Google Scholar 

  21. A. G. Chentsov, Funct. Differ. Equ. 9, 71 (2002).

    MATH  MathSciNet  Google Scholar 

  22. A. G. Chentsov, Doklady Mathematics 61(1), 83 (2000).

    MathSciNet  Google Scholar 

  23. Z. Semadeni, Banach Spaces of Continuous Functions (PWN, Warsaw, 1971).

    MATH  Google Scholar 

  24. A. G. Chentsov, Soochow J. Math. 32(3), 441 (2006).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Chentsov.

Additional information

Original Russian Text © A.G. Chentsov, 2011, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Vol. 17, No. 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chentsov, A.G. Ultrafilters of measurable spaces as generalized solutions in abstract attainability problems. Proc. Steklov Inst. Math. 275 (Suppl 1), 12–39 (2011). https://doi.org/10.1134/S0081543811090021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543811090021

Keywords

Navigation