Skip to main content
Log in

Krichever-Novikov algebras, their representations and applications in geometry and mathematical physics

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. I. M. Krichever and S. P. Novikov, “Algebras of Virasoro Type, Riemann Surfaces and the Structures of Soliton Theory,” Funkts. Anal. Ego Prilozh. 21(2), 46–63 (1987).

    MathSciNet  Google Scholar 

  2. I. M. Krichever and S. P. Novikov, “Algebras of Virasoro Type, Riemann Surfaces and Strings in Minkowski Space,” Funkts. Anal. Ego Prilozh. 21(4), 47–61 (1987).

    MathSciNet  Google Scholar 

  3. I.M. Krichever and S. P. Novikov, “Algebras of Virasoro Type, the Energy-Momentum Tensor, and Operator Expansions on Riemann Surfaces,” Funkts. Anal. Ego Prilozh. 23(1), 24–40 (1989).

    MathSciNet  Google Scholar 

  4. O. K. Sheinman, “A Fermion Model of Representations of Affine Krichever-Novikov Algebras,” Funkts. Anal. Ego Prilozh. 35(3), 60–72 (2001).

    MathSciNet  Google Scholar 

  5. I. M. Krichever and S. P. Novikov, “Holomorphic Bundles and Difference Scalar Operators: Single-Point Constructions,” Russ. Math. Surveys 55(1), 180–181 (2000).

    Article  MathSciNet  Google Scholar 

  6. I. M. Krichever and S. P. Novikov, “Holomorphic Bundles and Commuting Difference Operators. Two-term Constructions,” Russ. Math. Surveys 55(3), 586–588 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  7. I. M. Krichever and S. P. Novikov, “A Two-Dimensionalized Toda Chain, Commuting Difference Operators, and Holomorphic Vector Bundles,” Russ. Math. Surveys 58(3), 473–510 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Schlichenmaier and O. K. Sheinman, “The Knizhnik-Zamolodchikov Equations for Positive Genus, and Krichever-Novikov Algebras,” Russ. Math. Surveys 59(4), 737–770 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. L. Kontsevich, “The Virasoro Algebra and the Teichmüller Space,” Funkts. Anal. Ego Prilozh. 21(2), 78–79 (1987).

    MathSciNet  Google Scholar 

  10. P. G. Grinevich and A. Yu. Orlov, “Variations of the Complex Structure of Riemann Surfaces by Vector Fields on the Circle and Objects in KP Theory. The Krichever-Novikov Problem of the Action by the Baker-Akhiezer Function,” Funct. Anal. Appl. 24(1), 61–63 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Schlichenmaier and O. K. Sheinman, “The Wess-Zumino-Witten-Novikov Theory, Knizhnik-Zamolodchikov Equations, and Krichever-Novikov Algebras,” Russ. Math. Surveys 54(1), 213–249 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Polyakov, “Quantum Geometry of Bosonic Strings,” Phys. Lett. B 103(3), 207–210 (1981).

    Article  MathSciNet  Google Scholar 

  13. D. Friedan and S. Shenker, “The AnalyticGeometry of the Two-Dimensional Conformal Field Theory”, Nucl. Phys. B 281, 509–545 (1987).

    Article  MathSciNet  Google Scholar 

  14. D. Bernard, “On the Wess-Zumino-Witten Models on the Torus,” Nucl. Phys. B 303, 77–93 (1988).

    Article  MathSciNet  Google Scholar 

  15. D. Bernard, “On the Wess-Zumino-Witten Models on Riemann Surfaces,” Nucl. Phys. B 309, 145–174 (1988).

    Article  MathSciNet  Google Scholar 

  16. A. Tsuchiya, K. Ueno, and Y. Yamada, “Conformal Field Theory on Universal Family of Stable Curves with Gauge Symmetries,” Adv. Stud. Pure Math. 19, 459–566 (1989).

    MathSciNet  Google Scholar 

  17. M. Schlichenmaier, Verallgemeinerte Krichever-Novikov Algebren und deren Darstellungen, Ph.D. Thesis (Universität Mannheim, Mannheim, 1990).

    MATH  Google Scholar 

  18. B. L. Feigin and D. B. Fuks, “Skew-Symmetric Invariant Differential Operators on the Line and Verma Modules Over the Virasoro Algebra,” Funkts. Anal. Ego Prilozh. 16(2), 47–63 (1982).

    MathSciNet  Google Scholar 

  19. I. M. Gel’fand, “The Center of an Infinitesimal Group Ring,” Mat. Sb. 26, 103–112 (1950).

    Google Scholar 

  20. V. G. Kac, Infinite-Dimensional Lie Algebras (Mir, Moscow, 1993; Cambridge Univ. Press, Cambridge, 1994).

    MATH  Google Scholar 

  21. V. G. Kac and A. K. Raina, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras (World Sci., Teaneck, N.J., 1987).

    MATH  Google Scholar 

  22. H. Sugawara, “A Field Theory of Currents,” Phys. Rev. 176, 2019–2025 (1968).

    Article  Google Scholar 

  23. L. Bonora, M. Rinaldi, J. Russo, and K. Wu, “The Sugawara Construction on Genus g Riemann Surfaces,” Phys. Lett. B 208, 440–446 (1988).

    Article  MathSciNet  Google Scholar 

  24. M. Schlichenmaier and O. K. Sheinman, “Sugawara Construction and Casimir Operators for Krichever-Novikov Algebras,” J. Math. Sci. 92, 3807–3834 (1998); http://arxiv.org/abs/math/9512016.

    Article  MathSciNet  MATH  Google Scholar 

  25. O. K. Sheinman, “Krichever-Novikov Algebras, Their Representations and Applications,” in Geometry, Topology, and Mathematical Physics. S. P. Novikov’s Seminar 2002–2003, Ed. by V.M. Buchstaber and I.M. Krichever (Am. Math. Soc., Providence, R.I., 2004), pp. 297–316.

    Google Scholar 

  26. V. G. Knizhnik and A. B. Zamolodchikov, “Current Algebra and Wess-Zumino Model in Two Dimensions,” Nuclear Phys. B 247(1), 83–103 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  27. I. M. Krichever and S. P. Novikov, “Holomorphic Vector Bundles Over Riemann Surfaces and the Kadomcev-Petvia švili Equation. 1,” Funkts. Anal. Ego Prilozh. 12(4), 41–52 (1978).

    MathSciNet  MATH  Google Scholar 

  28. I.M. Krichever and S. P. Novikov, “Holomorphic Bundles Over Algebraic Curves, and Nonlinear Equations,” Usp. Mat. Nauk 35(6), 47–68 (1980).

    MathSciNet  MATH  Google Scholar 

  29. O. K. Sheinman, “Krichever-Novikov Algebras and Self-Duality Equations on Riemann Surfaces,” Russ. Math. Surveys 56(1), 176–178 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  30. O. K. Sheinman, “Second Order Casimirs for the Affine Krichever-Novikov Algebras \(\widehat{\mathfrak{g}\mathfrak{l}}_{g,2}\) and \(\widehat{\mathfrak{s}\mathfrak{l}}_{g,2}\),” Moscow Math. J. 1(4), 605–628 (2001).

    MathSciNet  MATH  Google Scholar 

  31. O. K. Sheinman, “Second-Order Casimir Operators of the Affine Krichever-Novikov Algebras \(\widehat{\mathfrak{g}^1 }\) and \(\widehat{\mathfrak{s}\mathfrak{l}_{g,2} }\),” Russ. Math. Surveys 56(5), 986–987 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Schlichenmaier, “Central Extensions and Semi-Infinite Wedge Representations of Krichever-Novikov Algebras for More than Two Points,” Lett.Math. Phys. 20, 33–46 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  33. O. K. Sheinman, “Elliptic Affine Lie Algebras,” Funct. Anal. Appl. 24(3), 210–219 (1991).

    Article  MathSciNet  Google Scholar 

  34. O. K. Sheinman, “Affine Lie Algebras on Riemann Surfaces,” Funct. Anal. Appl. 27(4), 266–272 (1994).

    Article  MathSciNet  Google Scholar 

  35. O. K. Sheinman, “Representations of Krichever-Novikov Algebras,” in Topics in Topology and Mathematical Physics, Ed. by S. P. Novikov (Am.Math. Soc., Providence, R.I., 1995), pp. 185–197.

    Google Scholar 

  36. M. Schlichenmaier, “Differential Operator Algebras on Compact Riemann Surfaces,” in Generalized Symmetries in Physics (Clausthal, 1993), Ed. by H.-D. Doebner, V. K. Dobrev, and A. G. Ushveridze (World Sci., River Edge, N.J., 1994), pp. 425–434.

    Google Scholar 

  37. M. Schlichenmaier, An Introduction to Riemann Surfaces, Algebraic Curves, and Moduli Spaces (Springer-Verlag, Berlin, 1989).

    MATH  Google Scholar 

  38. V. A. Sadov, “Bases on Multipunctured Riemann Surfaces and Interacting Strings Amplitudes,” Commun. Math. Phys. 136, 585–597 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Schlichenmaier, “Krichever-Novikov Algebras for More Than Two Points,” Lett. Math. Phys. 19, 151–165 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Schlichenmaier, “Krichever-Novikov Algebras for More Than Two Points: Explicit Generators,” Lett. Math. Phys. 19, 327–336 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Ruffing, Th. Deck, and M. Schlichenmaier, “String Branchings on Complex Tori and Algebraic Representations of Generalized Krichever-Novikov Algebras,” Lett. Math. Phys. 26, 23–32 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Schlichenmaier, “Degenerations of Generalized Krichever-Novikov Algebras on Tori,” J. Math. Phys. 34, 3809–3824 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Schlichenmaier, “Local Cocycles and Central Extensions for Multi-Point Algebras of Krichever-Novikov Type,” J. Reine Angew. Math. 559, 53–94 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Schlichenmaier, “Higher Genus Affine Algebras of Krichever-Novikov Type,” Moscow Math. J. 4(3), 1395–1427 (2003).

    MathSciNet  Google Scholar 

  45. A. A. Kirillov, Elements of Representation Theory (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  46. I. Frenkel, “Orbital Theory of the Affine Lie Algebras,” Invent. Math. 77(2), 301–352 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  47. O. K. Sheinman, “Highest Weight Modules of Some Quasigraded Lie Algebras on Elliptic Curves,” Funct. Anal. Appl. 26(3), 203–208 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  48. O.K. Sheinman, “Highest-Weight Modules for Affine Lie Algebras on Riemann Surfaces,” Funct. Anal. Appl. 29(1), 44–55 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  49. V. G. Kac and D. H. Peterson, “Spin and Wedge Representations of Infinite-Dimensional Lie Algebras and Groups,” Proc. Nat. Acad. Sci. U.S.A. 78(6), Part 1, 3308–3312 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  50. A. N. Tyurin, “Classification of Vector Bundles Over an Algebraic Curve of Arbitrary Genus,” Am. Math. Soc. Translat., Ser. 2 63, 245–279 (1967).

    Google Scholar 

  51. I. M. Krichever, “Algebraic Curves and Nonlinear Difference Equations,” Usp. Mat. Nauk 33(4), 215–216 (1978).

    MathSciNet  MATH  Google Scholar 

  52. N. Hitchin, “Flat Connections and Geometric Quantization,” Commun. Math. Phys. 131, 347–380 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  53. K. Kodaira, Complex Manifolds and Deformation of Complex Structures (Springer, New York, 1986).

    MATH  Google Scholar 

  54. K. Ueno, “Introduction to Conformal Field Theory with Gauge Symmetries,” in Geometry and Physics, Proceedings of Aarhus Conference, 1995, Ed. by J. E. Andersen, et al. (Marcel Dekker, New York, 1997), pp. 603–745.

    Google Scholar 

  55. G. Felder and Ch. Wieczerkowski, “Conformal Blocks on Elliptic Curves and the Knizhnik-Zamolodchikov-Bernard Equation,” Commun. Math. Phys. 176, 133–161 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  56. E. Arbarello, C. De Concini, V. G. Kac, and C. Procesi, “Moduli Spaces of Curves and Representation Theory,” Comm. Math. Phys. 117(1), 1–36 (1988).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.K. Sheinman, 2007, published in Sovremennye Problemy Matematiki, 2007, Vol. 10, pp. 5–140

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheinman, O.K. Krichever-Novikov algebras, their representations and applications in geometry and mathematical physics. Proc. Steklov Inst. Math. 274 (Suppl 1), 85–161 (2011). https://doi.org/10.1134/S0081543811070029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543811070029

Keywords

Navigation