Skip to main content
Log in

Differential equations with meromorphic coefficients

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The following problems of the analytic theory of differential equations are considered: Hilbert’s 21st problem for Fuchsian systems of linear differential equations, the Birkhoff normal form problem for systems of linear differential equations with irregular singularities, and the classification problem for isomonodromic deformations of Fuchsian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hartman, Ordinary Differential Equations (Wiley, New York, 1964; Mir, Moscow, 1970).

    MATH  Google Scholar 

  2. B. Riemann, Works (Gostekhteorizdat, Moscow, 1948).

    Google Scholar 

  3. D. Hilbert, “Mathematische Probleme,” in Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys. Klasse (Paris, 1900), pp. 253–297.

  4. N. P. Vekua, Systems of Singular Integral Equations and Some Boundary Value Problems (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  5. J. Plemelj, Problems in the Sense of Riemann and Klein (Interscience, New York, 1964).

    MATH  Google Scholar 

  6. V. I. Arnold and Yu. S. Il’yashenko, “Ordinary Differential Equations,” Itogi Nauki Tekh., Ser.: Sovr. Probl. Mat. Fundam. Napravleniya 1, 7–140 (1985).

    MathSciNet  Google Scholar 

  7. Kohn A. Treibich, “Un résultat de Plemelj” Progr. Math. 37, 307–312 (1983).

    MathSciNet  Google Scholar 

  8. I. N. Muskhelishvili, Singular Integral Equations (Nauka, Moscow, 1968) [in Russian].

    MATH  Google Scholar 

  9. I. A. Lappo-Danilevskii, Application of Functions of Matrices to the Theory of Linear Systems of Ordinary Differential Equations (Gostekhteorizdat, Moscow, 1957) [in Russian].

    Google Scholar 

  10. B. L. Krylov, “A Final Solution of the Riemann Problem for Gaussian Systems,” Tr. Kazan. Aviation. Inst. 31, 203–445 (1956).

    Google Scholar 

  11. N. P. Erugin, The Riemann Problem (Nauka i Tekhnika, Minsk, 1982) [in Russian].

    MATH  Google Scholar 

  12. H. Röhrl, “Das Riemann-Hilbertsche Problem der Theorie der linearen Differentialgleichungen,” Math. Ann. 133(1), 1–25 (1957).

    Article  MathSciNet  Google Scholar 

  13. G. D. Birkhoff, “A Theorem on Matrices of Analytic Functions,” Math. Ann. 74, 122–133 (1913).

    Article  MathSciNet  Google Scholar 

  14. H. Grauert, “Analytische Faserungen uber holomorph-vollstandingen Raumen,” Math. Ann. 135(3), 263–273 (1958).

    Article  MATH  MathSciNet  Google Scholar 

  15. W. Dekkers, “The Matrix of a Connection Having Regular Singularities on a Vector Bundle of Rank 2 on P 1(C),” Lecture Notes Math. 712, 33–43 (1979).

    Article  MathSciNet  Google Scholar 

  16. V. A. Golubeva, “Some Problems in the Analytic Theory of Feynman Integrals,” Usp. Mat. Nauk 31(2), 135–202 (1976) [Russian Math. Surveys 31 (2), 139–207 (1976)].

    MATH  MathSciNet  Google Scholar 

  17. M. Satô, M. Jimbo, and T. Miwa, Holonomic Quantum Fields (Mir, Moscow, 1983) [in Russian].

    Google Scholar 

  18. M. Jimbo and T. Miwa, “Monodromy Preserving Deformations of Linear Ordinary Differential Equations with Rational Coefficients. II” Physica D 2, 407–448 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  19. A. A. Bolibrukh, “On Sufficient Conditions for the Positive Solvability of the Riemann-Hilbert Problem,” Mat. Zametki 51(2), 9–19 (1992) [Math. Notes 51 (2), 110–117 (1992).

    MathSciNet  Google Scholar 

  20. V. P. Kostov, “Fuchsian Systems on CP 1 and the Riemann-Hilbert Problem,” C. R. Acad. Sci. Paris Sér. I Math. 315, 143–148 (1992).

    MATH  MathSciNet  Google Scholar 

  21. P. Deligne, “Equations différentielles a points singuliers réguliers,” Lecture Notes Math. 163, 1–133 (1970).

    Article  MathSciNet  Google Scholar 

  22. A. Poincaré, On Groups of Linear Equations, in Selected Works (Nauka, Moscow, 1974), Vol. 3 [in Russian].

    Google Scholar 

  23. A. A. Bolibrukh, “Construction of a Fuchsian Equation from a Monodromy Representation,” Mat. Zametki 48(5), 22–34 (1990) [Math. Notes 48 (5), 1090–1099 (1990)].

    MATH  MathSciNet  Google Scholar 

  24. A. H. M. Levelt, “Hypergeometric Functions,” Nederl. Akad. Wet. Proc., Ser. A 64, 361–401 (1961).

    MathSciNet  Google Scholar 

  25. A. A. Bolibrukh, “The Riemann-Hilbert Problem,” Usp. Mat. Nauk 45(2), 3–47 (1990) [Russian Math. Surveys 45 (2), 1–58 (1990)].

    MathSciNet  Google Scholar 

  26. A. A. Bolibrukh, “Hilbert’s 21st Problem for Linear Fuchsian Systems,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 206, 3–158 (1994).

    Google Scholar 

  27. G. D. Birkhoff, “Collected Mathematical Papers,” J. Amer. Math. Soc. 1, 259–306 (1950).

    Google Scholar 

  28. F. R. Gantmacher (Gantmakher), The Theory of Matrices (Chelsea, New York, 1959; Nauka, Moscow, 1988).

    MATH  Google Scholar 

  29. W. B. Jurkat, D. A. Lutz, and A. Peyerimhoff, “Birkhoff Invariants and Effective Calculations for Meromorphic Differential Equations. I, II,” J. Math. Anal. Appl. 53, 438–470 (1976); Houston J. Math. 2, 207–238 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  30. W. Balser, “Analytic Transformation to Birkhoff Standard Form in Dimension Three,” Funkcial. Ekvac. 33(1), 59–67 (1990).

    MATH  MathSciNet  Google Scholar 

  31. W. Balser, “Meromorphic Transformation to Birkhoff Standard Form in Dimension Three,” J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36, 233–246 (1989).

    MATH  MathSciNet  Google Scholar 

  32. A. A. Bolibrukh, “Meromorphic Transformation to Birkhoff Standard Form in Small Dimensions,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 225, 87–95 (1999) [Proc. Steklov Inst. Math. 225, 78–86 (1999)].

    MathSciNet  Google Scholar 

  33. L. Schlesinger, “Über Lösungen gewisser Differentialgleichungen als Funktionen der singularen Punkte,” J. Reine Angew. Math. 129, 287–294 (1905).

    Article  Google Scholar 

  34. M. Jimbo and T. Miwa, “Monodromy Preserving Deformations of Linear Ordinary Differential Equations with Rational Coefficients. II” Physica D 2, 407–448 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  35. B. Malgrange, “Sur les déformations isomonodromiques,” Progr. Math. 37, 427–438 (1983).

    MathSciNet  Google Scholar 

  36. A. Its and V. Novokshenov, The Isomonodromic Deformation Method in the Theory of Painlevé Equations, Lecture Notes Math. 1191 (1986).

  37. S. Sibuya, Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation (Amer. Math. Soc., Providence, RI, 1990).

    MATH  Google Scholar 

  38. K. Iwasaki et al., From Gauss to Painlevè. A Modern Theory of Special Functions (Vieweg, Braunschweig, 1991).

    MATH  Google Scholar 

  39. A. H. M. Levelt, Hypergeometric Functions, Nederl. Akad. Wet., Proc., Ser. A 64, 361–401 (1961).

  40. M. F. Atiyah, “Complex Analytic Connections in Fibre Bundles,” Trans. Amer. Math. Soc. 85(1), 181–207 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  41. Ch. Okoneck, M. Schneider, and H. Spindler, Vector Bundles on Complex Projective Spaces (Birkhäuser, Boston, Mass., 1980; Mir, Moscow, 1984).

    Google Scholar 

  42. A. Bolibrukh, “On Sufficient Conditions for the Existence of a Fuchsian Equation with Prescribed Monodromy” J. Dynam. Control Systems 5(4), 453–472 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  43. A. Bolibruch, “On Orders of Movable Poles of the Schlesinger Equation,” J. Dynam. Control Systems 6(1), 57–74 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  44. B. Bojarski, “Connections between Complex and Global Analysis,” in Complex Analysis. Methods, Trends, and Applications (Akademie, Berlin, 1983), pp. 97–110.

    Google Scholar 

  45. A. Pressley and G. Segal, Loop Groups (Clarendon, Oxford, 1986; Mir, Moscow, 1990).

    MATH  Google Scholar 

  46. Bolibrukh A. A., “On the Existence of Fuchsian Systems with Given Asymptotics,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 216, 32–44 (1997) [Proc. Steklov Inst. Math. 216, 26–37 (1995)].

    MathSciNet  Google Scholar 

  47. Bolibrukh A. A., “On Fuchsian Systems with Given Asymptotics and Monodromy,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 224, 112–121 (1999) [Proc. Steklov Inst. Math. 224, 98–106 (1999)].

    MathSciNet  Google Scholar 

  48. V. P. Kostov, “Quantum States of Monodromy Groups” J. Dynam. Control Systems 5(1), 51–100 (1998).

    Article  MathSciNet  Google Scholar 

  49. D. V. Anosov, “Concerning the Definition of Isomonodromic Deformation of Fuchsian Systems,” in Ulmer Seminaireüber Funktionalysis und Differentialgleichungen (Univ. Ulm, Ulm, 1997), Vol. 2, pp. 1–12.

    Google Scholar 

  50. A. A. Bolibrukh, “On Isomonodromic Confluences of Fuchsian Singularities,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 221, 127–142 (1998) [Proc. Steklov Inst. Math. 221, 117–132 (1998)].

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Bolibrukh, 2003, published in Sovremennye Problemy Matematiki, 2003, Vol. 1, pp. 29–82.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolibrukh, A.A. Differential equations with meromorphic coefficients. Proc. Steklov Inst. Math. 272 (Suppl 2), 13–43 (2011). https://doi.org/10.1134/S0081543811030035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543811030035

Keywords

Navigation