Skip to main content
Log in

Deconfinement phase transition in mirror of symmetries

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We argue that the deconfinement phase transition in Yang-Mills theories can be viewed as a change of effective non-perturbative degrees of freedom and of symmetries of their interactions. In short, the strings in four dimensions (4d) at temperatures below the critical temperature T c are replaced by particles, or field theories in 3d at T > T c. The picture emerges within various approaches based on dual models, lattice data and effective field theoretic models. We concentrate mostly on the lattice data, or the language of quantum geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mandelstam, “Vortices and Quark Confinement in Non-Abelian Gauge Theories,” Phys. Rep. 23, 245–249 (1976).

    Article  Google Scholar 

  2. G. ′t Hooft, “Gauge Theories with Unified Weak, Electromagnetic and Strong Interactions,” in High Energy Physics, Ed. by A. Zichichi (Edit. Compositori, Bologna, 1976), pp. 1225–1249.

    Google Scholar 

  3. J. Greensite, “The Confinement Problem in Lattice Gauge Theory,” Prog. Part. Nucl. Phys. 51, 1–83 (2003); arXiv: hep-lat/0301023.

    Article  Google Scholar 

  4. O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz, “Large N Field Theories, String Theory and Gravity,” Phys. Rep. 323, 183–386 (2000); arXiv: hep-th/9905111.

    Article  MathSciNet  Google Scholar 

  5. E. Witten, “Anti-de Sitter Space, Thermal Phase Transition, and Confinement in Gauge Theories,” Adv. Theor. Math. Phys. 2, 505–532 (1998); arXiv: hep-th/9803131.

    MathSciNet  MATH  Google Scholar 

  6. T. Sakai and S. Sugimoto, “Low Energy Hadron Physics in Holographic QCD,” Prog. Theor. Phys. 113, 843–882 (2005); arXiv: hep-th/0412141.

    Article  MATH  Google Scholar 

  7. O. Aharony, J. Sonnenschein, and S. Yankielowicz, “A Holographic Model of Deconfinement and Chiral Symmetry Restoration,” Ann. Phys. 322, 1420–1443 (2007); arXiv: hep-th/0604161.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. E. Kharzeev, “Hot and Dense Matter: from RHIC to LHC. Theoretical Overview,” Nucl. Phys. A 827, 118c–127c (2009); arXiv: 0902.2749 [hep-ph].

    Article  Google Scholar 

  9. M. Gyulassy and L. McLerran, “New Forms of QCD Matter Discovered at RHIC,” Nucl. Phys. A 750, 30–63 (2005); arXiv: nucl-th/0405013.

    Article  Google Scholar 

  10. E. V. Shuryak, “What RHIC Experiments and Theory Tell Us about Properties of Quark-Gluon Plasma?,” Nucl. Phys. A 750, 64–83 (2005); arXiv: hep-ph/0405066.

    Article  Google Scholar 

  11. B. Sathiapalan, “Vortices on the String World Sheet and Constraints on Toral Compactification,” Phys. Rev. D 35, 3277–3279 (1987).

    Article  Google Scholar 

  12. Ya. I. Kogan, “Vortices on the World Sheet of a String; Critical Dynamics,” Pis’ma Zh. Eksp. Teor. Fiz. 45(12), 556–559 (1987) [JETP Lett. 45, 709-712 (1987)].

    Google Scholar 

  13. J. J. Atick and E. Witten, “The Hagedorn Transition and the Number of Degrees of Freedom of String Theory,” Nucl. Phys. B 310, 291–334 (1988).

    Article  MathSciNet  Google Scholar 

  14. A. S. Gorsky, V. I. Zakharov, and A. R. Zhitnitsky, “Classification of QCD Defects via Holography,” Phys. Rev. D 79, 106003 (2009); arXiv: 0902.1842 [hep-ph].

    Article  Google Scholar 

  15. O. Bergman and G. Lifschytz, “Holographic U(1)A and String Creation,” J. High Energy Phys., No. 4, 043 (2007); arXiv: hep-th/0612289.

  16. A. M. Polyakov, Gauge Fields and Strings (Harwood Acad. Publ., Chur, 1987).

    Google Scholar 

  17. J. Ambjorn, “Quantization of Geometry,” arXiv: hep-th/9411179.

  18. M. N. Chernodub and V. I. Zakharov, “Magnetic Component of Yang-Mills Plasma,” Phys. Rev. Lett. 98, 082002 (2007); arXiv: hep-ph/0611228.

    Article  Google Scholar 

  19. A. D’Alessandro and M. D’Elia, “Magnetic Monopoles in the High Temperature Phase of Yang-Mills Theories,” Nucl. Phys. B 799, 241–254 (2008); arXiv: 0711.1266 [hep-lat].

    Article  MATH  Google Scholar 

  20. J. Liao and E. Shuryak, “Strongly Coupled Plasma with Electric and Magnetic Charges,” Phys. Rev. C 75, 054907 (2007); arXiv: hep-ph/0611131.

    Article  Google Scholar 

  21. J. Liao and E. Shuryak, “The Magnetic Component of Quark-Gluon Plasma Is Also a Liquid,” Phys. Rev. Lett. 101, 162302 (2008); arXiv: 0804.0255 [hep-ph].

    Article  Google Scholar 

  22. A. D’Alessandro, M. D’Elia, and E. V. Shuryak, “Thermal Monopole Condensation and Confinement in Finite Temperature Yang-Mills Theories,” Phys. Rev. D 81, 094501 (2010); arXiv: 1002.4161 [hep-lat].

    Article  Google Scholar 

  23. A. M. Polyakov, “Thermal Properties of Gauge Fields and Quark Liberation,” Phys. Lett. B 72, 477–480 (1978).

    Article  MathSciNet  Google Scholar 

  24. V. I. Zakharov, “From Confining Fields on the Lattice to Higher Dimensions in the Continuum,” Braz. J. Phys. 37, 165–185 (2007); arXiv: hep-ph/0612342.

    Article  Google Scholar 

  25. M. N. Chernodub and V. I. Zakharov, “Towards Understanding Structure of the Monopole Clusters,” Nucl. Phys. B 669, 233–254 (2003); arXiv: hep-th/0211267.

    Article  MATH  Google Scholar 

  26. V. G. Bornyakov, P. Yu. Boyko, M. I. Polikarpov, and V. I. Zakharov, “Monopole Clusters at Short and Large Distances,” Nucl. Phys. B 672, 222–238 (2003); arXiv: hep-lat/0305021.

    Article  MATH  Google Scholar 

  27. S. Ejiri, S. Kitahara, Y. Matsubara, and T. Suzuki, “String Tension and Monopoles in T ≠ 0 SU(2) QCD,” Phys. Lett. B 343, 304–309 (1995); arXiv: hep-lat/9407022.

    Article  Google Scholar 

  28. M. N. Chernodub, M. I. Polikarpov, A. I. Veselov, and M. A. Zubkov, “Aharonov-Bohm Effect, Center Monopoles and Center Vortices in SU(2) Lattice Gluodynamics,” Nucl. Phys. B, Proc. Suppl. 73, 575–577 (1999); arXiv: hep-lat/9809158.

    Article  MATH  Google Scholar 

  29. R. Bertle, M. Faber, J. Greensite, and S. Olejník, “The Structure of Projected Center Vortices in Lattice Gauge Theory,” J. High Energy Phys., No. 3, 019 (1999); arXiv: hep-lat/9903023.

  30. M. Engelhardt, K. Langfeld, H. Reinhardt, and O. Tennert, “Deconfinement in SU(2) Yang-Mills Theory as a Center Vortex Percolation Transition,” Phys. Rev. D 61, 054504 (2000); arXiv: hep-lat/9904004.

    Article  Google Scholar 

  31. J. Gattnar, K. Langfeld, A. Schäfke, and H. Reinhardt, “Center-Vortex Dominance after Dimensional Reduction of SU(2) Lattice Gauge Theory,” Phys. Lett. B 489, 251–258 (2000); arXiv: hep-lat/0005016.

    Article  MATH  Google Scholar 

  32. G. S. Bali, J. Fingberg, U. M. Heller, F. Karsch, and K. Schilling, “Spatial String Tension in the Deconfined Phase of (3 + 1)-Dimensional SU(2) Gauge Theory,” Phys. Rev. Lett. 71, 3059–3062 (1993); arXiv: hep-lat/9306024.

    Article  Google Scholar 

  33. M. Kruczenski and A. Lawrence, “Random Walks and the Hagedorn Transition,” J. High Energy Phys., No. 7, 031 (2006); arXiv: hep-th/0508148.

  34. A. Gorsky and V. Zakharov, “Magnetic Strings in QCD as Non-Abelian Vortices,” Phys. Rev. D 77, 045017 (2008); arXiv: 0707.1284 [hep-th].

    Article  Google Scholar 

  35. A. Vuorinen and L. G. Yaffe, “Z(3)-Symmetric Effective Theory for SU(3) Yang-Mills Theory at High Temperature,” Phys. Rev. D 74, 025011 (2006); arXiv: hep-ph/0604100.

    Article  Google Scholar 

  36. R. D. Pisarski, “Fuzzy Bags and Wilson Lines,” Prog. Theor. Phys., Suppl. 168, 276–284 (2007); arXiv: hep-ph/0612191.

    Article  Google Scholar 

  37. Ph. de Forcrand, A. Kurkela, and A. Vuorinen, “Center-Symmetric Effective Theory for High-Temperature SU(2) Yang-Mills Theory,” Phys. Rev. D 77, 125014 (2008); arXiv: 0801.1566 [hep-ph].

    Article  Google Scholar 

  38. M. N. Chernodub, A. Nakamura, and V. I. Zakharov, “Manifestations of Magnetic Vortices in the Equation of State of a Yang-Mills Plasma,” Phys. Rev. D 78, 074021 (2008); arXiv: 0807.5012 [hep-lat].

    Article  Google Scholar 

  39. S. Hioki, S. Kitahara, S. Kiura, Y. Matsubara, O. Miyamura, S. Ohno, and T. Suzuki, “Abelian Dominance in SU(2) Color Confinement,” Phys. Lett. B 272, 326–332 (1991); Erratum: Phys. Lett. B 281, 416 (1992).

    Article  Google Scholar 

  40. M. N. Chernodub, A. D’Alessandro, M. D’Elia, and V. I. Zakharov, “Thermal Monopoles and Selfdual Dyons in the Quark-Gluon Plasma,” arXiv: 0909.5441 [hep-ph].

  41. V. G. Bornyakov, M. N. Chernodub, F. V. Gubarev, M. I. Polikarpov, T. Suzuki, A. I. Veselov, and V. I. Zakharov, “Anatomy of the Lattice Magnetic Monopoles,” Phys. Lett. B 537, 291–296 (2002); arXiv: hep-lat/0103032.

    Article  MATH  Google Scholar 

  42. F. V. Gubarev, A. V. Kovalenko, M. I. Polikarpov, S. N. Syritsyn, and V. I. Zakharov, “Fine Tuned Vortices in Lattice SU(2) Gluodynamics,” Phys. Lett. B 574, 136–140 (2003); arXiv: hep-lat/0212003.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernodub, M.N., Nakamura, A. & Zakharov, V.I. Deconfinement phase transition in mirror of symmetries. Proc. Steklov Inst. Math. 272, 75–87 (2011). https://doi.org/10.1134/S0081543811010081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543811010081

Keywords

Navigation