Skip to main content
Log in

On the blow-up of solutions to anisotropic parabolic equations with variable nonlinearity

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The aim of this paper is to establish sufficient conditions of the finite time blow-up in solutions of the homogeneous Dirichlet problem for the anisotropic parabolic equations with variable nonlinearity \( u_t = \sum\nolimits_{i = 1}^n {D_i (a_i (x,t)|D_i u|^{p^i (x) - 2} D_i u) + \sum\nolimits_{i = 1}^K {b_i (x,t)|u|^{\sigma _i (x,t) - 2} u} } \) . Two different cases are studied. In the first case a i a i (x), p i ≡ 2, σ i σ i (x, t), and b i (x, t) ≥ 0. We show that in this case every solution corresponding to a “large” initial function blows up in finite time if there exists at least one j for which min σ j (x, t) > 2 and either b j > 0, or b j (x, t) ≥ 0 and Σπ b ρ(t) j (x, t) dx < ∞ with some σ(t) > 0 depending on σ j . In the case of the quasilinear equation with the exponents p i and σ i depending only on x, we show that the solutions may blow up if min σ i ≥ max p i , b i ≥ 0, and there exists at least one j for which min σ j > max p j and b j > 0. We extend these results to a semilinear equation with nonlocal forcing terms and quasilinear equations which combine the absorption (b i ≤ 0) and reaction terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Aboulaich, D. Meskine, and A. Souissi, “New Diffusion Models in Image Processing,” Comput. Math. Appl. 56, 874–882 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  2. E. Acerbi and G. Mingione, “Regularity Results for Stationary Electro-rheological Fluids,” Arch. Ration. Mech. Anal. 164, 213–259 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Acerbi, G. Mingione, and G. Seregin, “Regularity Results for Parabolic Systems Related to a Class of Non-Newtonian Fluids,” Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21(1), 25–60 (2004).

    MATH  MathSciNet  Google Scholar 

  4. Yu. A. Alkhutov, S. N. Antontsev, and V. V. Zhikov, “Parabolic Equations with Variable Order of Nonlinearity,” in Zb. Prats’ Inst. Mat., Nats. Akad. Nauk Ukr. (Inst. Mat., Nats. Akad. Nauk Ukr., Kyiv, 2009), Vol. 6 (1), pp. 23–50 [in Russian].

    Google Scholar 

  5. S. Antontsev, M. Chipot, and Y. Xie, “Uniqueness Results for Equations of the p(x)-Laplacian Type,” Adv. Math. Sci. Appl. 17, 287–304 (2007).

    MATH  MathSciNet  Google Scholar 

  6. S. N. Antontsev and J. F. Rodrigues, “On Stationary Thermo-rheological Viscous Flows,” Ann. Univ. Ferrara, Sez. 7, Sci. Mat. 52, 19–36 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Antontsev and S. Shmarev, “Elliptic Equations and Systems with Nonstandard Growth Conditions: Existence, Uniqueness and Localization Properties of Solutions,” Nonlinear Anal., Theory Methods Appl. 65, 728–761 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Antontsev and S. Shmarev, “Elliptic Equations with Anisotropic Nonlinearity and Nonstandard Growth Conditions,” in Handbook of Differential Equations. Stationary Partial Differential Equations (Elsevier, Amsterdam, 2006), Vol. 3, pp. 1–100.

    Google Scholar 

  9. S. Antontsev and S. Shmarev, “Parabolic Equations with Anisotropic Nonstandard Growth Conditions,” in Free Boundary Problems. Theory and Applications (Birkhäuser, Basel, 2007), Int. Ser. Numer. Math. 154, pp. 33–44.

    Chapter  Google Scholar 

  10. S. Antontsev and S. Shmarev, “Extinction of Solutions of Parabolic Equations with Variable Anisotropic Nonlinearities,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 261, 16–25 (2008) [Proc. Steklov Inst. Math. 261, 11–21 (2008)].

    MathSciNet  Google Scholar 

  11. S. Antontsev and S. Shmarev, “Anisotropic Parabolic Equations with Variable Nonlinearity,” Publ. Mat. 53(2), 355–399 (2009).

    MATH  MathSciNet  Google Scholar 

  12. S. Antontsev and S. Shmarev, “Localization of Solutions of Anisotropic Parabolic Equations,” Nonlinear Anal., Theory Methods Appl. 71(12), e725–e737 (2009).

    Article  MathSciNet  Google Scholar 

  13. S. Antontsev and S. Shmarev, “Vanishing Solutions of Anisotropic Parabolic Equations with Variable Nonlinearity,” J. Math. Anal. Appl. 361(2), 371–391 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Antontsev and S. Shmarev, “Blow-up of Solutions to Parabolic Equations with Nonstandard Growth Conditions,” J. Comput. Appl. Math. 234(9), 2633–2645 (2010).

    Article  MATH  Google Scholar 

  15. S. Antontsev and V. Zhikov, “Hihger Integrability for Parabolic Equations of p(x, t)-Laplacian Type,” Adv. Diff. Eqns. 10(9), 1053–1080 (2005).

    MATH  MathSciNet  Google Scholar 

  16. Y. Chen, S. Levine, and M. Rao, “Variable Exponent, Linear Growth Functionals in Image Restoration,” SIAM J. Appl. Math. 66, 1383–1406 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Fujita, “On the Blowing up of Solutions of the Cauchy Problem for u t = Δu+u 1+α,” J. Fac. Sci. Univ. Tokyo, Sect. IA 13, 109–124 (1966).

    MATH  Google Scholar 

  18. H. Fujita, “On Some Nonexistence and Nonuniqueness Theorems for Nonlinear Parabolic Equations,” in Nonlinear Functional Analysis: Proc. Symp. Pure Math., Chicago, 1968 (Am. Math. Soc., Providence, RI, 1970), Part 1, Proc. Symp. Pure Math. 18, pp. 105–113.

    Google Scholar 

  19. V. A. Galaktionov and S. I. Pohozaev, “Blow-up and Critical Exponents for Parabolic Equations with Nondivergent Operators: Dual Porous Medium and Thin Film Operators,” J. Evol. Eqns. 6, 45–69 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  20. V. A. Galaktionov and J. L. Vázquez, A Stability Technique for Evolution Partial Differential Equations: A Dynamical Systems Approach (Birkhäuser, Boston, 2004), Prog. Nonlinear Diff. Eqns. Appl. 56.

    MATH  Google Scholar 

  21. S. Kaplan, “On the Growth of Solutions of Quasi-linear Parabolic Equations,” Commun. Pure Appl. Math. 16, 305–330 (1963).

    Article  MATH  Google Scholar 

  22. S. Levine, Y. Chen, and J. Stanich, “Image Restoration via Nonstandard Diffusion,” Tech. Rep. no. 04-01 (Dept. Math. Comput. Sci., Duquesne Univ., Pittsburgh, 2004).

    Google Scholar 

  23. E. Mitidieri and S. I. Pohozaev, “Nonexistence of Weak Solutions for Some Degenerate Elliptic and Parabolic Problems on ℝn,” J. Evol. Eqns. 1, 189–220 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  24. J. P. Pinasco, “Blow-up for Parabolic and Hyperbolic Problems with Variable Exponents,” Nonlinear Anal., Theory Methods Appl. 71(3–4), 1094–1099 (2009).

    MATH  MathSciNet  Google Scholar 

  25. S. I. Pohozaev and A. Tesei, “Blow-up of Nonnegative Solutions to Quasilinear Parabolic Inequalities,” Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., Ser. 9, Rend. Lincei, Mat. Appl. 11(2), 99–109 (2000).

    MATH  MathSciNet  Google Scholar 

  26. S. I. Pokhozhaev and A. Tesei, “Critical Exponents for the Absence of Solutions for Systems of Quasilinear Parabolic Inequalities,” Diff. Uravn. 37(4), 521–528 (2001) [Diff. Eqns. 37, 551–558 (2001)].

    MathSciNet  Google Scholar 

  27. K. R. Rajagopal and M. Růžička, “Mathematical Modeling of Electrorheological Materials,” Contin. Mech. Thermodyn. 13, 59–78 (2001).

    Article  MATH  Google Scholar 

  28. M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory (Springer, Berlin, 2000), Lect. Notes Math. 1748.

    MATH  Google Scholar 

  29. A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-up in Quasilinear Parabolic Equations (W. de Gruyter, Berlin, 1995).

    MATH  Google Scholar 

  30. M. Tsutsumi, “Existence and Nonexistence of Global Solutions for Nonlinear Parabolic Equations,” Publ. Res. Inst. Math. Sci., Kyoto Univ. 8, 211–229 (1972).

    Article  MathSciNet  Google Scholar 

  31. M. Tsutsumi, “Existence and Nonexistence of Global Solutions of the First Boundary Value Problem for a Certain Quasilinear Parabolic Equation,” Funkc. Ekvacioj 17, 13–24 (1974).

    MATH  MathSciNet  Google Scholar 

  32. V. V. Zhikov, “On Lavrentiev’s Effect,” Dokl. Akad. Nauk 345(1), 10–14 (1995) [Dokl. Math. 52 (3), 325–329 (1995)].

    MathSciNet  Google Scholar 

  33. V. V. Zhikov, “On Lavrentiev’s Phenomenon,” Russ. J. Math. Phys. 3(2), 249–269 (1995).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Antontsev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antontsev, S., Shmarev, S. On the blow-up of solutions to anisotropic parabolic equations with variable nonlinearity. Proc. Steklov Inst. Math. 270, 27–42 (2010). https://doi.org/10.1134/S008154381003003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S008154381003003X

Keywords

Navigation