Skip to main content
Log in

Spectral properties of operators with polynomial invariants in real finite-dimensional spaces

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider linear operators lying in the orthogonal group of a quadratic form and study those spectral properties of such operators that can be expressed in terms of the signature of this form. We show that in the typical case these transformations are symplectic. Some of the results can be extended to the general case when the operator admits a homogeneous form of degree ≥3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Nauka, Moscow, 1972; Wiley, New York, 1975).

    Google Scholar 

  2. J. Williamson, “On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems,” Am. J. Math. 58(1), 141–163 (1936).

    Article  Google Scholar 

  3. V. V. Kozlov, “Linear Systems with a Quadratic Integral,” Prikl. Mat. Mekh. 56(6), 900–906 (1992) [Appl. Math. Mech. 56, 803–809 (1992)].

    MathSciNet  Google Scholar 

  4. V. N. Rubanovskii, “On Bifurcation and Stability of Stationary Motions in Certain Problems of Dynamics of a Solid Body,” Prikl. Mat. Mekh. 38(4), 616–627 (1974) [Appl. Math. Mech. 38, 573–584 (1974)].

    MathSciNet  Google Scholar 

  5. G. Frobenius, “Über lineare Substitutionen und bilineare Formen,” J. Math. 84, 1–63 (1878).

    Google Scholar 

  6. L. S. Pontryagin, “Hermitian Operators in Spaces with Indefinite Metric,” Izv. Akad. Nauk SSSR, Ser. Mat. 8(6), 243–280 (1944).

    MATH  Google Scholar 

  7. D. Carlson and H. Schneider, “Inertia Theorems for Matrices: The Semidefinite Case,” J. Math. Anal. Appl. 6, 430–446 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  8. H. K. Wimmer, “Inertia Theorems for Matrices, Controllability, and Linear Vibrations,” Linear Algebra Appl. 8, 337–343 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  9. V. I. Arnol’d, “Conditions for Nonlinear Stability of Stationary Plane Curvilinear Flows of an Ideal Fluid,” Dokl. Akad. Nauk SSSR 162(5), 975–978 (1965) [Sov. Math., Dokl. 6, 773–777 (1965)].

    MathSciNet  Google Scholar 

  10. O. Taussky, “A Generalization of a Theorem of Lyapunov,” J. Soc. Ind. Appl. Math. 9, 640–643 (1961).

    Article  MathSciNet  Google Scholar 

  11. A. Ostrowski and H. Schneider, “Some Theorems on the Inertia of General Matrices,” J. Math. Anal. Appl. 4, 72–84 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Weyl, The Classical Groups: Their Invariants and Representations (Princeton Univ. Press, Princeton, NJ, 1939; Inostrannaya Literatura, Moscow, 1947).

    Google Scholar 

  13. V. V. Kozlov and A. A. Karapetyan, “On the Stability Degree,” Diff. Uravn. 41(2), 186–192 (2005) [Diff. Eqns. 41, 195–201 (2005)].

    MathSciNet  Google Scholar 

  14. F. R. Gantmacher, The Theory of Matrices (Nauka, Moscow, 1988; AMS Chelsea Publ., Providence, RI, 1998).

    Google Scholar 

  15. G. W. Hill, “On the Part of the Motion of the Lunar Perigee Which Is a Function of the Mean Motions of the Sun and Moon,” Acta Math. 8(1), 1–36 (1886).

    Article  MathSciNet  Google Scholar 

  16. V. V. Kozlov and D. V. Treshchev, Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts (Mosk. Gos. Univ., Moscow, 1991; Am. Math. Soc., Providence, RI, 1991).

    MATH  Google Scholar 

  17. M. G. Krein, “On an Application of the Fixed-Point Principle in the Theory of Linear Transformations of Spaces with an Indefinite Metric,” Usp. Mat. Nauk 5(2), 180–190 (1950) [Am. Math. Soc. Transl., Ser. 2, 1, 27–35 (1955)].

    MATH  MathSciNet  Google Scholar 

  18. S. V. Bolotin and V. V. Kozlov, “Asymptotic Solutions of Equations of Dynamics,” Vestn. Mosk. Univ., Ser 1: Mat., Mekh., No. 4, 84–89 (1980) [Mosc. Univ. Mech. Bull. 35 (3–4), 82–88 (1980)].

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Kozlov, 2010, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2010, Vol. 268, pp. 155–167.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlov, V.V. Spectral properties of operators with polynomial invariants in real finite-dimensional spaces. Proc. Steklov Inst. Math. 268, 148–160 (2010). https://doi.org/10.1134/S0081543810010128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543810010128

Keywords

Navigation