Skip to main content
Log in

Buffer phenomenon in the spatially one-dimensional Swift-Hohenberg equation

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider a boundary value problem for the spatially one-dimensional Swift-Hohenberg equation with zero Neumann boundary conditions at the endpoints of a finite interval. We establish that as the length l of the interval increases while the supercriticality ɛ is fixed and sufficiently small, the number of coexisting stable equilibrium states in this problem indefinitely increases; i.e., the well-known buffer phenomenon is observed. A similar result is obtained in the 2l-periodic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Swift and P. C. Hohenberg, “Hydrodynamic Fluctuations at the Convective Instability,” Phys. Rev. A 15(1), 319–328 (1977).

    Article  Google Scholar 

  2. H. Haken, Advanced Synergetics (Springer, Berlin, 1983).

    MATH  Google Scholar 

  3. A. V. Getling, Rayleigh-Bénard Convection: Structures and Dynamics (World Sci., Singapore, 1998; Editorial URSS, Moscow, 1999).

    MATH  Google Scholar 

  4. M. Tlidi, M. Georgiou, and P. Mandel, “Transverse Patterns in Nascent Optical Bistability,” Phys. Rev. A 48(6), 4605–4609 (1993).

    Article  Google Scholar 

  5. J. Lega, J. V. Moloney, and A. C. Newell, “Swift-Hohenberg Equation for Lasers,” Phys. Rev. Lett. 73, 2978–2981 (1994).

    Article  Google Scholar 

  6. N. E. Kulagin, L. M. Lerman, and T. G. Shmakova, “On Radial Solutions of the Swift-Hohenberg Equation,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 261, 188–209 (2008) [Proc. Steklov Inst. Math. 261, 183–203 (2008)].

    MathSciNet  Google Scholar 

  7. E. F. Mishchenko, V. A. Sadovnichii, A. Yu. Kolesov, and N. Kh. Rozov, Autowave Processes in Nonlinear Media with Diffusion (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  8. N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations (Nauka, Moscow, 1974) [in Russian].

    MATH  Google Scholar 

  9. P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley-Intersci., London, 1971; Mir, Moscow, 1973).

    MATH  Google Scholar 

  10. Yu. A. Mitropol’skii and O. B. Lykova, Integral Manifolds in Nonlinear Mechanics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  11. V. I. Arnold, Supplementary Chapters to the Theory of Ordinary Differential Equations (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  12. A. Yu. Kolesov and N. Kh. Rozov, Invariant Tori of Nonlinear Wave Equations (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  13. P. Collet and J.-P. Eckmann, Instabilities and Fronts in Extended Systems (Princeton Univ. Press, Princeton, NJ, 1990).

    MATH  Google Scholar 

  14. W. Eckhaus, Studies in Non-linear Stability Theory (Springer, Berlin, 1965).

    MATH  Google Scholar 

  15. Y. Pomeau and S. Zaleski, “Wavelength Selection in One-Dimensional Cellular Structures,” J. Phys. 42(4), 515–528 (1981).

    MathSciNet  Google Scholar 

  16. S. Kogelman and R. C. DiPrima, “Stability of Spatially Periodic Supercritical Flows in Hydrodynamics,” Phys. Fluids 13(1), 1–11 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. Pomeau and P. Manneville, “Wavelength Selection in Cellular Flows,” Phys. Lett. A 75(4), 296–298 (1980).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kh. Rozov.

Additional information

Original Russian Text © A.Yu. Kolesov, E.F. Mishchenko, N.Kh. Rozov, 2010, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2010, Vol. 268, pp. 137–154.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesov, A.Y., Mishchenko, E.F. & Rozov, N.K. Buffer phenomenon in the spatially one-dimensional Swift-Hohenberg equation. Proc. Steklov Inst. Math. 268, 130–147 (2010). https://doi.org/10.1134/S0081543810010116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543810010116

Keywords

Navigation