Skip to main content
Log in

A biomechanical inactivation principle

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

This paper develops the mathematical side of a theory of inactivations in human biomechanics. This theory has been validated by practical experiments, including zero-gravity experiments. The theory mostly relies on Pontryagin’s maximum principle on the one side and on transversality theory on the other side. It turns out that the periods of silence in the activation of muscles that are observed in practice during the motions of the arm can appear only if “something like the energy expenditure” is minimized. Conversely, minimization of a criterion taking into account the “energy expenditure” guaranties the presence of these periods of silence, for sufficiently short movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Abend, E. Bizzi, and P. Morasso, “Human Arm Trajectory Formation,” Brain 105(Part 2), 331–348 (1982).

    Article  Google Scholar 

  2. C. G. Atkeson and J. M. Hollerbach, “Kinematic Features of Unrestrained Vertical Arm Movements,” J. Neurosci. 5(9), 2318–2330 (1985).

    Google Scholar 

  3. S. Ben-Itzhak and A. Karniel, “Minimum Acceleration Criterion with Constraints Implies Bang-Bang Control as an Underlying Principle for Optimal Trajectories of Arm Reaching Movements,” Neural Comput. 20(3), 779–812 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Bernstein, The Co-ordination and Regulation of Movements (Pergamon Press, Oxford, 1967).

    Google Scholar 

  5. B. Berret, C. Darlot, F. Jean, T. Pozzo, C. Papaxanthis, and J.-P. Gauthier, “The Inactivation Principle: Mathematical Solutions Minimizing the Absolute Work and Biological Implications for the Planning of Arm Movements,” PLoS Comput. Biol. 4(10), e1000194 (2008).

    Article  MathSciNet  Google Scholar 

  6. B. Berret, J.-P. Gauthier, and C. Papaxanthis, “How Humans Control Arm Movements,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 261, 47–60 (2008) [Proc. Steklov Inst. Math. 261, 44–58 (2008)].

    MathSciNet  Google Scholar 

  7. J. J. Boessenkool, E. J. Nijhof, and C. J. Erkelens, “A Comparison of Curvatures of Left and Right Hand Movements in a Simple Pointing Task,” Exp. Brain Res. 120(3), 369–376 (1998).

    Article  Google Scholar 

  8. B. Bonnard, “Invariants in the Feedback Classification of Nonlinear Systems,” in New Trends in Nonlinear Control Theory (Springer, Berlin, 1989), Lect. Notes Control Inf. Sci. 122, pp. 13–22.

    Chapter  Google Scholar 

  9. S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory (SIAM, Philadelphia, PA, 1994), SIAM Stud. Appl. Math. 15.

    MATH  Google Scholar 

  10. F. H. Clarke, Optimization and Nonsmooth Analysis (J. Wiley and Sons, New York, 1983).

    MATH  Google Scholar 

  11. T. Flash and N. Hogan, “The Coordination of Arm Movements: An Experimentally Confirmed Mathematical Model,” J. Neurosci. 5(7), 1688–1703 (1985).

    Google Scholar 

  12. J.-P. Gauthier and I. Kupka, Deterministic Observation Theory and Applications (Cambridge Univ. Press, Cambridge, 2001).

    Book  MATH  Google Scholar 

  13. J.-P. Gauthier and V. Zakalyukin, “On the One-Step-Bracket-Generating Motion Planning Problem,” J. Dyn. Control Syst. 11, 215–235 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Gentili, V. Cahouet, and C. Papaxanthis, “Motor Planning of Arm Movements Is Direction-Dependent in the Gravity Field,” Neuroscience 145(1), 20–32 (2007).

    Article  Google Scholar 

  15. E. Guigon, P. Baraduc, and M. Desmurget, “Computational Motor Control: Redundancy and Invariance,” J. Neurophysiol. 97(1), 331–347 (2007).

    Article  Google Scholar 

  16. M. Hallett and C. D. Marsden, “Ballistic Flexion Movements of the Human Thumb,” J. Physiol. 294, 33–50 (1979).

    Google Scholar 

  17. C. M. Harris and D. M. Wolpert, “Signal-Dependent Noise Determines Motor Planning,” Nature 394, 780–784 (1998).

    Article  Google Scholar 

  18. F. Hermens and S. Gielen, “Posture-Based or Trajectory-Based Movement Planning: A Comparison of Direct and Indirect Pointing Movements,” Exp. Brain Res. 159(3), 340–348 (2004).

    Article  Google Scholar 

  19. M. J. Hollerbach and T. Flash, “Dynamic Interactions between Limb Segments during Planar Arm Movement,” Biol. Cybern. 44(1), 67–77 (1982).

    Article  Google Scholar 

  20. R. Kalman, “When Is a Linear Control System Optimal?,” Trans. ASME, Ser. D: J. Basic Eng. 86, 51–60 (1964).

    Google Scholar 

  21. E. B. Lee and L. Markus, Foundations of Optimal Control Theory (J. Wiley and Sons, New York, 1967).

    MATH  Google Scholar 

  22. P. Morasso, “Spatial Control of Arm Movements,” Exp. Brain Res. 42(2), 223–227 (1981).

    Article  Google Scholar 

  23. A. Y. Ng and S. Russell, “Algorithms for Inverse Reinforcement Learning,” in Proc. 17th Int. Conf. on Machine Learning (Morgan Kaufmann Publ., San Francisco, CA, 2000), pp. 663–670.

    Google Scholar 

  24. J. Nishii and T. Murakami, “Energetic Optimality of Arm Trajectory,” in Proc. Int. Conf. on Biomechanics of Man (Charles Univ., Prague, 2002), pp. 30–33.

    Google Scholar 

  25. K. C. Nishikawa, S. T. Murray, and M. Flanders, “Do Arm Postures Vary with the Speed of Reaching?,” J. Neurophysiol. 81(5), 2582–2586 (1999).

    Google Scholar 

  26. C. Papaxanthis, T. Pozzo, and M. Schieppati, “Trajectories of Arm Pointing Movements on the Sagittal Plane Vary with both Direction and Speed,” Exp. Brain Res. 148(4), 498–503 (2003).

    Google Scholar 

  27. C. Papaxanthis, T. Pozzo, and P. Stapley, “Effects of Movement Direction upon Kinematic Characteristics of Vertical Arm Pointing Movements in Man,” Neurosci. Lett. 253(2), 103–106 (1998).

    Article  Google Scholar 

  28. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Fizmatgiz, Moscow, 1961; Pergamon Press, Oxford, 1964).

    Google Scholar 

  29. J. F. Soechting, “Effect of Target Size on Spatial and Temporal Characteristics of a Pointing Movement in Man,” Exp. Brain Res. 54(1), 121–132 (1984).

    Article  Google Scholar 

  30. J. F. Soechting and F. Lacquaniti, “Invariant Characteristics of a Pointing Movement in Man,” J. Neurosci. 1(7), 710–720 (1981).

    Google Scholar 

  31. E. Todorov, “Optimal Control Theory,” in Bayesian Brain: Probabilistic Approaches to Neural Coding, Ed. by K. Doya et al. (MIT Press, Cambridge, MA, 2007), Ch. 12, pp. 269–298.

    Google Scholar 

  32. Y. Uno, M. Kawato, and R. Suzuki, “Formation and Control of Optimal Trajectory in Human Multijoint Arm Movement. Minimum Torque-Change Model,” Biol. Cybern. 61(2), 89–101 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauthier, JP., Berret, B. & Jean, F. A biomechanical inactivation principle. Proc. Steklov Inst. Math. 268, 93–116 (2010). https://doi.org/10.1134/S0081543810010098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543810010098

Keywords

Navigation