Skip to main content
Log in

On recognizability by spectrum of finite simple groups of types B n , C n , and 2 D n for n = 2k

Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The spectrum of a finite group is the set of its element orders. A group is said to be recognizable (by spectrum) if it is isomorphic to any finite group that has the same spectrum. A nonabelian simple group is called quasi-recognizable if every finite group with the same spectrum possesses a unique nonabelian composition factor and this factor is isomorphic to the simple group in question. We consider the problem of recognizability and quasi-recognizability for finite simple groups of types B n , C n , and 2 D n with n = 2k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. V. D. Mazurov, Izv. Ural’sk. Gos. Univ., Ser. Mat. Mekh. 36(7), 119 (2005).

    MathSciNet  Google Scholar 

  2. M. A. Grechkoseeva, W. J. Shi, and A. V. Vasil’ev, Front. Math. China 3(2), 275 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  3. A. S. Kondrat’ev, Sib. Mat. Zh. 48(6), 1250 (2007).

    MATH  Google Scholar 

  4. O. A. Alekseeva and A. S. Kondrat’ev, Sib. Mat. Zh. 44(2), 241 (2003).

    MATH  MathSciNet  Google Scholar 

  5. V. D. Mazurov, Algebra i Logika 41(2), 166 (2002).

    MATH  MathSciNet  Google Scholar 

  6. A. V. Vasil’ev and M. A. Grechkoseeva, Sib. Mat. Zh. 45(3), 510 (2004).

    MATH  MathSciNet  Google Scholar 

  7. J. S. Williams, J. Algebra 69(2), 487 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  8. A. S. Kondrat’ev, Mat. Sb. 180(6), 787 (1989).

    MATH  Google Scholar 

  9. A. S. Kondrat’ev and V. D. Mazurov, Sib. Mat. Zh. 41(2), 359 (2000).

    MATH  MathSciNet  Google Scholar 

  10. A. V. Vasil’ev, Sib. Mat. Zh. 46(3), 511 (2005).

    MATH  Google Scholar 

  11. A. V. Vasil’ev and I. B. Gorshkov, Sib. Mat. Zh. 50(2), 292 (2009).

    MathSciNet  Google Scholar 

  12. V. D. Mazurov, Algebra i Logika 36(1), 37 (1997).

    MATH  MathSciNet  Google Scholar 

  13. A. V. Zavarnitsin, Preprint No. 48, IM SO RAN (Inst. of Mathematics, Siberian Branch of the Russian Academy of Sciences, 2000).

  14. K. Zsigmondy, Monatsh. Math. Phys. 3, 265 (1892).

    Article  MathSciNet  Google Scholar 

  15. A. V. Vasil’ev and M. A. Grechkoseeva, Algebra i Logika 47(5), 558 (2008).

    MATH  MathSciNet  Google Scholar 

  16. G. C. Gerono, Nouv. Ann. Math. (2) 9, 469 (1870).

    Google Scholar 

  17. A. A. Buturlakin, Preprint, IM SO RAN (Inst. of Mathematics, Siberian Branch of the Russian Academy of Sciences, 2008).

  18. A. A. Buturlakin and M. A. Grechkoseeva, Algebra i Logika 46(2), 129 (2007).

    MATH  MathSciNet  Google Scholar 

  19. A. V. Vasil’ev and E. P. Vdovin, Algebra i Logika 44(6), 682 (2005).

    MATH  MathSciNet  Google Scholar 

  20. R. M. Guralnick and P. H. Tiep, J. Group Theory 6(3), 271 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  21. D. Gorenstein, R. Lyons, and R. Solomon, The Classification of the Finite Simple Groups (Amer. Math. Soc., Providence, RI, 1998).

    MATH  Google Scholar 

  22. W. M. Kantor and A. Seress, J. Algebra 247(3), 370 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  23. A. V. Zavarnitsin and V. D. Mazurov, Algebra i Logika 38(3), 296 (1999).

    MathSciNet  Google Scholar 

  24. R. W. Carter, Proc. London Math. Soc. (3) 42(1), 1 (1981).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vasil’ev.

Additional information

Original Russian Text © A.V. Vasil’ev, I.B.Gorshkov, M.A.Grechkoseeva, A.S.Kondrat’ev, A.M. Staroletov, 2009, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2009, Vol. 15, No. 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil’ev, A.V., Gorshkov, I.B., Grechkoseeva, M.A. et al. On recognizability by spectrum of finite simple groups of types B n , C n , and 2 D n for n = 2k . Proc. Steklov Inst. Math. 267 (Suppl 1), 218–233 (2009). https://doi.org/10.1134/S0081543809070207

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543809070207

Keywords

Navigation