Skip to main content
Log in

Consistency on cubic lattices for determinants of arbitrary orders

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider a special class of two-dimensional discrete equations defined by relations on elementary N × N squares, N > 2, of the square lattice ℤ2, and propose a new type of consistency conditions on cubic lattices for such discrete equations that is connected to bending elementary N × N squares, N > 2, in the cubic lattice ℤ3. For an arbitrary N we prove such consistency on cubic lattices for two-dimensional discrete equations defined by the condition that the determinants of values of the field at the points of the square lattice ℤ2 that are contained in elementary N × N squares vanish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. I. Mokhov, “On Consistency of Determinants on Cubic Lattices,” Usp. Mat. Nauk 63(6), 169–170 (2008) [Russ. Math. Surv. 63, 1146–1148 (2008)]; arXiv: 0809.2032.

    MathSciNet  Google Scholar 

  2. F. W. Nijhoff and A. J. Walker, “The Discrete and Continuous Painlevé VI Hierarchy and the Garnier Systems,” Glasg. Math. J. 43(A), 109–123 (2001); arXiv: nlin/0001054.

    Article  MathSciNet  Google Scholar 

  3. F. W. Nijhoff, “Lax Pair for the Adler (Lattice Krichever-Novikov) System,” Phys. Lett. A 297(1–2), 49–58 (2002); arXiv: nlin/0110027.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. I. Bobenko and Yu. B. Suris, “Integrable Systems on Quad-Graphs,” Int. Math. Res. Not., No. 11, 573–611 (2002); arXiv: nlin/0110004.

  5. V. E. Adler, A. I. Bobenko, and Yu. B. Suris, “Classification of Integrable Equations on Quad-Graphs. The Consistency Approach,” Commun. Math. Phys. 233(3), 513–543 (2003); arXiv: nlin/0202024.

    MATH  MathSciNet  Google Scholar 

  6. A. I. Bobenko and Yu. B. Suris, “Discrete Differential Geometry. Consistency as Integrability,” arXiv:math/0504358.

  7. A. I. Bobenko and Yu. B. Suris, “On Organizing Principles of Discrete Differential Geometry. Geometry of Spheres,” Usp. Mat. Nauk 62(1), 3–50 (2007) [Russ. Math. Surv. 62, 1–43 (2007)]; arXiv:math/0608291.

    MathSciNet  Google Scholar 

  8. A. P. Veselov, “Integrable Maps,” Usp. Mat. Nauk 46(5), 3–45 (1991) [Russ. Math. Surv. 46 (5), 1–51 (1991)].

    MATH  MathSciNet  Google Scholar 

  9. V. E. Adler, A. I. Bobenko, and Yu. B. Suris, “Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases,” arXiv: 0705.1663.

  10. S. P. Tsarev and T. Wolf, “Classification of Three-Dimensional Integrable Scalar Discrete Equations,” Lett. Math. Phys. 84(1), 31–39 (2008); arXiv: 0706.2464.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Hietarinta, “A New Two-Dimensional Lattice Model That Is ‘Consistent around a Cube’,” J. Phys. A: Math. Gen. 37(6), L67–L73 (2004); arXiv: nlin/0311034.

    Article  MATH  MathSciNet  Google Scholar 

  12. V. E. Adler and A. P. Veselov, “Cauchy Problem for Integrable Discrete Equations on Quad-Graphs,” Acta Appl. Math. 84(2), 237–262 (2004); arXiv:math-ph/0211054.

    MATH  MathSciNet  Google Scholar 

  13. V. E. Adler and Yu. B. Suris, “Q4: Integrable Master Equation Related to an Elliptic Curve,” Int. Math. Res. Not., No. 47, 2523–2553 (2004); arXiv: nlin/0309030.

  14. I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants (Birkhäuser, Boston, MA, 1994).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Mokhov.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2009, Vol. 266, pp. 202–217.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokhov, O.I. Consistency on cubic lattices for determinants of arbitrary orders. Proc. Steklov Inst. Math. 266, 195–209 (2009). https://doi.org/10.1134/S0081543809030110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543809030110

Keywords

Navigation