Skip to main content
Log in

The van Kampen obstruction and its relatives

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We review a cochain-free treatment of the classical van Kampen obstruction ϑ to embeddability of an n-polyhedron in ℝ2n and consider several analogs and generalizations of ϑ, including an extraordinary lift of ϑ, which has been studied by J.-P. Dax in the manifold case. The following results are obtained: (1) The mod 2 reduction of ϑ is incomplete, which answers a question of Sarkaria. (2) An odd-dimensional analog of ϑ is a complete obstruction to linkless embeddability (=“intrinsic unlinking”) of a given n-polyhedron in ℝ2n+1. (3) A “blown-up” one-parameter version of ϑ is a universal type 1 invariant of singular knots, i.e., knots in ℝ3 with a finite number of rigid transverse double points. We use it to decide in simple homological terms when a given integer-valued type 1 invariant of singular knots admits an integral arrow diagram (= Polyak-Viro) formula. (4) Settling a problem of Yashchenko in the metastable range, we find that every PL manifold N nonembeddable in a given ℝm, m\( \frac{{3(n + 1)}} {2} \), contains a subset X such that no map N → ℝm sends X and N \ X to disjoint sets. (5) We elaborate on McCrory’s analysis of the Zeeman spectral sequence to geometrically characterize “k-co-connected and locally k-co-connected” polyhedra, which we embed in ℝ2nk for k < \( \frac{{n - 3}} {2} \), thus extending the Penrose-Whitehead-Zeeman theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Akhmetiev, “Pontryagin-Thom Construction for Approximation of Mappings by Embeddings,” Topol. Appl. 140, 133–149 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  2. P. M. Akhmet’ev and P. J. Eccles, “The Relationship between Framed Bordism and Skew-Framed Bordism,” Bull. London Math. Soc. 39, 473–481 (2007).

    Article  MathSciNet  Google Scholar 

  3. K. Barnett and M. Farber, “Topology of Configuration Space of Two Particles on a Graph. I,” arXiv: 0903.2180.

  4. D. R. Bausum, “Embeddings and Immersions of Manifolds in Euclidean Space,” Trans. Am. Math. Soc. 213, 263–303 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. C. Becker, “A Relation between Equivariant and Non-equivariant Stable Cohomotopy,” Math. Z. 199, 331–356 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Bestvina, M. Kapovich, and B. Kleiner, “Van Kampen’s Embedding Obstruction for Discrete Groups,” Invent. Math. 150, 219–235 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Böhme, “On Spatial Representations of Graphs,” in Contemporary Methods in Graph Theory, Ed. by R. Bodendieck (B.I.-Wissenschaftsverlag, Mannheim, 1990), pp. 151–167.

    Google Scholar 

  8. M. V. Brahm, “Approximating Maps of 2-Manifolds with Zero-Dimensional Nondegeneracy Sets,” Topol. Appl. 45, 25–38 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  9. G. E. Bredon, Sheaf Theory, 2nd ed. (Springer, New York, 1997).

    MATH  Google Scholar 

  10. K. S. Brown, Cohomology of Groups (Springer, New York, 1982).

    MATH  Google Scholar 

  11. J. L. Bryant, “Approximating Embeddings of Polyhedra in Codimension Three,” Trans. Am. Math. Soc. 170, 85–95 (1972).

    Article  MATH  Google Scholar 

  12. J. L. Bryant, “Triangulation and General Position of PL Diagrams,” Topol. Appl. 34, 211–233 (1990).

    Article  MATH  Google Scholar 

  13. S. Buoncristiano, C. P. Rourke, and B. J. Sanderson, A Geometric Approach to Homology Theory (Cambridge Univ. Press, Cambridge, 1976), LMS Lect. Note Ser. 18.

    MATH  Google Scholar 

  14. O. Cornea, G. Lupton, J. Oprea, and D. Tanré, Lusternik-Schnirelmann Category (Am. Math. Soc., Providence, RI, 2003), Math. Surv. Monogr. 103.

    MATH  Google Scholar 

  15. M. C. Crabb, ℤ/2-Homotopy Theory (Cambridge Univ. Press, Cambridge, 1980), LMS Lect. Note Ser. 44.

    Google Scholar 

  16. P. E. Conner and E. E. Floyd, “Fixed Point Free Involutions and Equivariant Maps,” Bull. Am. Math. Soc. 66, 416–441 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. de Longueville, “Bier Spheres and Barycentric Subdivision,” J. Comb. Theory, Ser. A 105, 355–357 (2004).

    Article  MATH  Google Scholar 

  18. J.-P. Dax, “Étude homotopique des espaces de plongements,” Ann. Sci. Éc. Norm. Supér., Sér. 4, 5, 303–377 (1972).

    MathSciNet  MATH  Google Scholar 

  19. P. J. Eccles and M. Grant, “Bordism Groups of Immersions and Classes Represented by Self-intersections,” Algebr. Geom. Topol. 7, 1081–1097 (2007); arXiv:math/0504152.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Flores, “Über n-dimensionale Komplexe, die im R 2n+1 absolut selbstverschlungen sind,” Ergeb. Math. Kolloq. 6, 4–7 (1935).

    Google Scholar 

  21. M. H. Freedman, V. S. Krushkal, and P. Teichner, “Van Kampen’s Embedding Obstruction Is Incomplete for 2-Complexes in ℝ4,” Math. Res. Lett. 1, 167–176 (1994).

    MathSciNet  MATH  Google Scholar 

  22. D. Gonçalves and A. Skopenkov, “Embeddings of Homology Equivalent Manifolds with Boundary,” Topol. Appl. 153, 2026–2034 (2006).

    Article  MATH  Google Scholar 

  23. B. Grünbaum, “Imbeddings of Simplicial Complexes,” Comment. Math. Helv. 44, 502–513 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Haefliger and M. W. Hirsch, “Immersions in the Stable Range,” Ann. Math., Ser. 2, 75, 231–241 (1962).

    Article  MathSciNet  Google Scholar 

  25. L. S. Harris, “Intersections and Embeddings of Polyhedra,” Topology 8, 1–26 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Hatcher and F. Quinn, “Bordism Invariants of Intersections of Submanifolds,” Trans. Am. Math. Soc. 200, 327–344 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Hauschild, “Äquivariante Homotopie. I,” Arch. Math. 29, 158–165 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  28. Sze-Tsen Hu, “Isotopy Invariants of Topological Spaces,” Proc. R. Soc. London, Ser. A 255, 331–366 (1960).

    Article  MATH  Google Scholar 

  29. I. M. James, “On Category, in the Sense of Lusternik-Schnirelmann,” Topology 17, 331–348 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  30. J. R. Klein, “On Embeddings in the Sphere,” Proc. Am. Math. Soc. 133, 2783–2793 (2005); arXiv:math/0310236.

    Article  MATH  Google Scholar 

  31. J. R. Klein and B. Williams, “Homotopical Intersection Theory. II: Equivariance,” Math. Z., doi: 10.1007/s00209-009-0491-1 (2009); arXiv: 0803.0017.

  32. V. S. Krushkal, “Embedding Obstructions and 4-Dimensional Thickenings of 2-Complexes,” Proc. Am. Math. Soc. 128, 3683–3691 (2000); arXiv:math/0004058.

    Article  MathSciNet  MATH  Google Scholar 

  33. Cz. Kosniowski, “Equivariant Cohomology and Stable Cohomotopy,” Math. Ann. 210, 83–104 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  34. L. Lovász and A. Schrijver, “A Borsuk Theorem for Antipodal Links and a Spectral Characterization of Linklessly Embeddable Graphs,” Proc. Am. Math. Soc. 126, 1275–1285 (1998).

    Article  MATH  Google Scholar 

  35. V. O. Manturov, “A Proof of Vassiliev’s Conjecture on the Planarity of Singular Links,” Izv. Ross. Akad. Nauk, Ser. Mat. 69(5), 169–178 (2005) [Izv. Math. 69, 1025–1033 (2005)].

    MathSciNet  Google Scholar 

  36. W. S. Massey and D. Rolfsen, “Homotopy Classification of Higher Dimensional Links,” Indiana Univ. Math. J. 34, 375–391 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Matoušek, Using the Borsuk-Ulam Theorem (Springer, Berlin, 2003).

    MATH  Google Scholar 

  38. J. Matoušek, M. Tancer, and U. Wagner, “Hardness of Embedding Simplicial Complexes in ℝd,” arXiv: 0807.0336.

  39. J. P. May, Equivariant Homotopy and Cohomology Theory (Am. Math. Soc., Providence, RI, 1996), CBMS Reg. Conf. Ser. Math. 91.

    MATH  Google Scholar 

  40. C. McCrory, “Cobordism Operations and Singularities of Maps,” Bull. Am. Math. Soc. 82, 281–283 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  41. C. McCrory, “A Characterization of Homology Manifolds,” J. London Math. Soc. 16, 149–159 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  42. C. McCrory, “Zeeman’s Filtration of Homology,” Trans. Am. Math. Soc. 250, 147–166 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  43. S. A. Melikhov, “Isotopic and Continuous Realizability of Maps in the Metastable Range,” Mat. Sb. 195(7), 71–104 (2004) [Sb. Math. 195, 983–1016 (2004)].

    MathSciNet  Google Scholar 

  44. S. A. Melikhov, “Sphere Eversions and Realization of Mappings,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 247, 159–181 (2004) [Proc. Steklov Inst. Math. 247, 143–163 (2004)]; arXiv:math/0305158.

    MathSciNet  Google Scholar 

  45. S. A. Melikhov, Review of V.A. Vassiliev’s paper “First-Order Invariants and First-Order Cohomology for Spaces of Embeddings of Self-intersecting Curves in ℝn,” Math. Rev. MR2179414 (2007i:57014). 3 p.

  46. S. A. Melikhov and E. V. Shchepin, “The Telescope Approach to Embeddability of Compacta,” arXiv:math/0612085.

  47. D. M. Meyer, “ℤ/p-Equivariant Maps between Lens Spaces and Spheres,” Math. Ann. 312, 197–214 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  48. R. Nikkuni, “The Second Skew-Symmetric Cohomology Group and Spatial Embeddings of Graphs,” J. Knot Theory Ramif. 9, 387–411 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  49. D. Repovš, W. Rosicki, A. Zastrow, and M. Željko, “Constructing Near-Embeddings of Codimension One Manifolds with Countable Dense Singular Sets,” arXiv: 0803.4251.

  50. D. Repovš and A. B. Skopenkov, “A Deleted Product Criterion for Approximability of Maps by Embeddings,” Topol. Appl. 87, 1–19 (1998).

    Article  MATH  Google Scholar 

  51. N. Robertson, P. Seymour, and R. Thomas, “Sachs’ Linkless Embedding Conjecture,” J. Comb. Theory, Ser. B 64, 185–227 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  52. R. H. Rosen, “Decomposing 3-Space into Circles and Points,” Proc. Am. Math. Soc. 11, 918–928 (1960).

    Article  Google Scholar 

  53. C. Rourke and B. Sanderson, “Homology Stratifications and Intersection Homology,” in Proc. Kirbyfest, Berkeley, CA (USA), June 22–26, 1998 (Geom. Topol. Publ., Coventry, 1999), Geom. Topol. Monogr. 2, pp. 455–472.

    Google Scholar 

  54. K. S. Sarkaria, “Embedding and Unknotting of Some Polyhedra,” Proc. Am. Math. Soc. 100, 201–203 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  55. K. S. Sarkaria, “A One-Dimensional Whitney Trick and Kuratowski’s Graph Planarity Criterion,” Isr. J. Math. 73, 79–89 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  56. A. Shapiro, “Obstructions to the Embedding of a Complex in a Euclidean Space. I: The First Obstruction,” Ann. Math., Ser. 2, 66, 256–269 (1957).

    Article  Google Scholar 

  57. R. Shinjo and K. Taniyama, “Homology Classification of Spatial Graphs by Linking Numbers and Simon Invariants,” Topol. Appl. 134, 53–67 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  58. A. Skopenkov, “Embedding and Knotting of Manifolds in Euclidean Spaces,” in Surveys in Contemporary Mathematics, Ed. by N. Young and Y. Choi (Cambridge Univ. Press, Cambridge, 2008), LMS Lect. Note Ser. 347, pp. 248–342; arXiv:math/0604045.

    Google Scholar 

  59. A. Skopenkov, “A New Invariant and Parametric Connected Sum of Embeddings,” Fundam. Math. 197, 253–269 (2007); arXiv:math/0509621.

    Article  MathSciNet  MATH  Google Scholar 

  60. M. Skopenkov, “Embedding Products of Graphs into Euclidean Spaces,” Fundam. Math. 179, 191–198 (2003); arXiv: 0808.1199.

    Article  MathSciNet  MATH  Google Scholar 

  61. M. Skopenkov, “On Approximability by Embeddings of Cycles in the Plane,” Topol. Appl. 134, 1–22 (2003); arXiv: 0808.1187.

    Article  MathSciNet  MATH  Google Scholar 

  62. S. Stolz, “The Level of Real Projective Spaces,” Comment. Math. Helv. 64, 661–674 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  63. A. S. Švarc, “The Genus of a Fiber Space. I, II,” Tr. Mosk. Mat. Obshch. 10, 217–272 (1961); 11, 99–126 (1962) [Am. Math. Soc. Transl., Ser. 2, 55, 49—140 (1966)].

    Google Scholar 

  64. K. Taniyama, “Homology Classification of Spatial Embeddings of a Graph,” Topol. Appl. 65, 205–228 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  65. K. Taniyama, “Higher Dimensional Links in a Simplicial Complex Embedded in a Sphere,” Pac. J. Math. 194, 465–467 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  66. B. R. Ummel, “Some Examples Relating the Deleted Product to Imbeddability,” Proc. Am. Math. Soc. 31, 307–311 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  67. E. R. van Kampen, “Komplexe in euklidischen Räumen,” Abh. Math. Semin. Univ. Hamburg 9, 72–78, 152–153 (1932).

    Google Scholar 

  68. V. A. Vassiliev, Topology of Complements of Discriminants (Phasis, Moscow, 1997); Partial Engl. transl.: Complements of Discriminants of Smooth Maps: Topology and Applications, Rev. ed. (Am. Math. Soc., Providence, RI, 1994).

    Google Scholar 

  69. V. A. Vasiliev, “First-Order Invariants and Cohomology of Spaces of Embeddings of Self-intersecting Curves in ℝn,” Izv. Ross. Akad. Nauk, Ser. Mat. 69(5), 3–52 (2005) [Izv. Math. 69, 865–912 (2005)].

    MathSciNet  Google Scholar 

  70. A. Yu. Volovikov and E. V. Shchepin, “Antipodes and Embeddings,” Mat. Sb. 196(1), 3–32 (2005) [Sb. Math. 196, 1–28 (2005)].

    MathSciNet  Google Scholar 

  71. C. Weber, “Plongements de polyèdres dans le domaine métastable,” Comment. Math. Helv. 42, 1–27 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  72. Tsen-Teh Wu, “On the mod 2 Imbedding Classes of a Triangulable Compact Manifold,” Sci. Record, New Ser. 2(3), 435–438 (1958).

    Google Scholar 

  73. Wen-Tsün Wu, “On the Realization of Complexes in Euclidean Spaces. I, II, III,” Acta Math. Sinica 5, 505–552 (1955); 7, 79–101 (1957); 8, 79–94 (1958). Engl. transl.: Sci. Sinica 7, 251–297, 365–387 (1958); 8, 133–150 (1959); “Parts I, III,” in Selected Works of Wen-Tsun Wu (World Sci., Hackensack, NJ, 2008), pp. 23–69, 71–83.

    MathSciNet  MATH  Google Scholar 

  74. I. Yaschenko, “Embedding a Smooth Compact Manifold into ℝn,” in Problems from Topology Atlas, Topology atlas document # qaaa-04 (1996), http://at.yorku.ca/q/a/a/a/04.htm

  75. E. C. Zeeman, “Polyhedral n-Manifolds. II: Embeddings,” in Topology of 3-Manifolds and Related Topics, Ed. by M. K. Fort, Jr. (Prentice-Hall, Englewood Cliffs, NJ, 1962), pp. 64–70.

    Google Scholar 

  76. A. Cavicchioli and L. Grasselli, “Cohomological Products and Transversality,” Rend. Sem. Mat. Torino 40(3), 115–125 (1982).

    MathSciNet  MATH  Google Scholar 

  77. R. A. Fenn, Techniques of Geometric Topology (Cambridge Univ. Press, Cambridge, 1983), LMS Lect. Note Ser. 57.

    MATH  Google Scholar 

  78. R. Fenn and D. Sjerve, “Geometric Cohomology Theory,” Contemp. Math. 20, 79–102 (1983).

    MathSciNet  MATH  Google Scholar 

  79. L. Grasselli, “Subdivision and Poincaré Duality,” Riv. Mat. Univ. Parma, Ser. 4, 9, 95–103 (1983).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Melikhov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melikhov, S.A. The van Kampen obstruction and its relatives. Proc. Steklov Inst. Math. 266, 142–176 (2009). https://doi.org/10.1134/S0081543809030092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543809030092

Keywords

Navigation