Skip to main content
Log in

Development of the collocations and least squares method

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We propose and implement new, more general versions of the method of collocations and least squares (the CLS method) and, for a system of linear algebraic equations, an orthogonal method for accelerating the convergence of an iterative solution. The use of the latter method and the proper choice of values of control parameters, based on the results of investigating the dependence of the properties of the CLS method on these parameters, as well as some other improvements of the CLS method suggested in this paper, allow one to solve numerically problems for Navier-Stokes equations in a reasonable time using a single-processor computer even for grids as large as 1280 × 1280. In this case, the total number of unknown variables is ∼ 25 · 106. The numerical results for the problem of the lid-driven cavity flow of a viscous fluid are in good agreement with known results of other authors, including those obtained by means of schemes of higher approximation order with a small artificial viscosity. This and some other facts prove that the new versions of the CLS method make it possible to obtain an approximate solution with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Carey, Y. K. Cheung, and S. L. Lau, Comput. Methods Appl. Mech. EngRG. 22, 121 (1980).

    Article  MATH  Google Scholar 

  2. T. Mizusawa and T. Kajita, Int. J. Numer. Methods Engrg. 18(6), 897 (1982).

    Article  MATH  Google Scholar 

  3. G. Burgess and E. Mahajerin, Comput. & Fluids, 12, 311 (1984).

    Article  MATH  Google Scholar 

  4. S. B. Dong and A. E. Lopez, Int. J. Solids and Structures 21, 515 (1985).

    Article  MATH  Google Scholar 

  5. B.-N. Jiang and G. F. Carey, Int. J. Numer. Methods Engrg. 24, 569 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  6. L. R. Bentley, G. F. Pinder, and I. Herrera, Numer. Methods Partial Differ. Equations 5(3), 227 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  7. L. G. Semin, A. G. Sleptsov, and V. P. Shapeev, Vychisl. Tekhnol. 1(2), 90 (1996).

    MATH  MathSciNet  Google Scholar 

  8. V. Karamyshev, V. Kovenya, and A. Sleptsov, in Computational Fluid Dynamics (Proc. 3rd ECCOMAS Conf.), 1996, Vol. 1, pp. 301–307.

    Google Scholar 

  9. L. G. Semin and V. P. Shapeev, in Proc. of the Siberian School-Workshop “Mathematical Problems of Mechanics of Continua”, Novosibirsk, 1997, pp. 125–126.

  10. L. G. Semin and V. P. Shapeev, Vychisl. Tekhnol. 3(3), 72 (1998).

    MATH  MathSciNet  Google Scholar 

  11. P. Bochev, Z. Cai, T. A. Manteuffel, and S. F. McCormick, SIAM J. Numer. Anal. 35(3), 990 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  12. L. G. Semin and V. P. Shapeev, in Proc. Int. Conf. on the Methods of Aerophysical Research, Novosibirsk, 1998, pp. 186–191.

  13. V. V. Belyaev and V. P. Shapeev, Vychisl. Tekhnol. 5(4), 12 (2000).

    MathSciNet  Google Scholar 

  14. V. P. Shapeev, L. G. Semin, and V. V. Belyaev, Proc. Steklov Inst. Math., Suppl. 2, 115 (2003).

  15. L. G. Semin, Vychisl. Tekhnol. 11(1), 18 (2006).

    Google Scholar 

  16. V. I. Isaev, V. P. Shapeev, and S. A. Eremin, Vychisl. Tekhnol. 12(3), 53 (2007).

    Google Scholar 

  17. V. I. Isaev and V. P. Shapeev, in Proc. Int. Conf. on the Methods of Aerophysical Research (Parallel’, Novosibirsk, 2007), pp. 147–152.

    Google Scholar 

  18. R. D. Russell and L. F. Shampine, Numer. Math. 19, 1 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  19. C. de Boor and B. Swartz, SIAM J. Numer. Anal. 10(4), 582 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  20. U. Ascher, J. Christiansen, and R. D. Russel, Math. Comp. 33, 659 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  21. A. G. Sleptsov, E. Yu. Letova, K. G. Salomatov, and I. V. Shmykov, Vychisl. Tekhnol. 2(5), 192 (1993).

    Google Scholar 

  22. A. V. Shapeev, Proc. of the 38th Int. Sci. Student Conf. “Student and the Scientific and Technical Progress”, Novosibirsk, 2000, p. 16.

  23. H. K. Moffat, J. Fluid Mech. 18, 1 (1964).

    Article  Google Scholar 

  24. E. Barragy and G. F. Carey, Comput. & Fluids 26(5), 453 (1997).

    Article  MATH  Google Scholar 

  25. V. A. Garanzha and V. N. Kon’shin, Zh. Vychisl. Mat. Mat. Fiz. 39(8), 1378 (1999).

    MathSciNet  Google Scholar 

  26. D. V. Beklemishev, Additional Chapters in Linear Algebra (Nauka, Moscow, 1983).

    Google Scholar 

  27. R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis (North-Holland, Amsterdam, 1979; Mir, Moscow, 1981).

    MATH  Google Scholar 

  28. O. A. Ladyzhenskaya, Mathematical Problems of Dynamics of a Viscous Incompressible Fluid (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  29. Y. Saad, Math. Comp. 37(155), 105 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  30. A. G. Sleptsov, Model. Mekh. 3(3), 132 (1989).

    MathSciNet  Google Scholar 

  31. A. G. Sleptsov, Model. Mekh. 3(5), 118 (1989).

    MathSciNet  Google Scholar 

  32. R. P. Fedorenko, Introduction to Computational Physics (MFTI, Moscow, 1994) [in Russian].

    Google Scholar 

  33. V. B. Karamyshev, V. M. Kovenya, A. G. Sleptsov, and S. G. Cherny, Comput. & Fluids 25(5), 467 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  34. M. A. Ol’shanskii, Doctor’s Dissertation in Physics and Mathematics (Moscow, 2006).

  35. A. V. Shapeev, Dinamika Sploshn. Sredy 116, 119 (2000).

    MathSciNet  Google Scholar 

  36. U. Ghia, K. N. Ghia, and C. T. Shin, J. Comput. Phys. 48, 387 (1982).

    Article  MATH  Google Scholar 

  37. C. J. Chen and H. J. Chen, J. Comput. Phys. 53(2), 209 (1984).

    Article  MATH  Google Scholar 

  38. C. H. Bruneau and C. Jouron, J. Comput. Phys. 89(2), 389 (1990).

    Article  MATH  Google Scholar 

  39. G. B. Deng, J. Piquet, P. Queutey, and M. Visonneau, Int. J. Numer. Methods Fluids 19(7), 605 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  40. O. Botella and R. Peyret, Comput. & Fluids 27(4), 421 (1998).

    Article  MATH  Google Scholar 

  41. P. N. Shankar and M. D. Deshpande, Annu. Rev. Fluid Mech. 32, 93 (2000).

    Article  MathSciNet  Google Scholar 

  42. M. Sahin and R. G. Owens, Int. J. Numer. Methods Fluids 42(1), 57 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  43. Y. Wu and S. Liao, Int. J. Numer. Methods Fluids 47, 185 (2005).

    Article  MATH  Google Scholar 

  44. E. Erturk, T. C. Corke, and C. Gokcol, Int. J. Numer. Methods Fluids 48, 747 (2005).

    Article  MATH  Google Scholar 

  45. M. Cheng and K. C. Hung, Comput. & Fluids 35, 1046 (2006).

    Article  Google Scholar 

  46. B. N. Chetverushkin, Introductory talk and plenary talk at the 5th Int. Congress on Math. Modeling (Dubna, 2002).

  47. A. I. Tolstykh, Compact Difference Schemes and Their Application in Aerohydrodynamics Problems (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Isaev.

Additional information

Original Russian Text © V.I. Isaev, V.P. Shapeev, 2008, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2008, Vol. 14, No. 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaev, V.I., Shapeev, V.P. Development of the collocations and least squares method. Proc. Steklov Inst. Math. 261 (Suppl 1), 87–106 (2008). https://doi.org/10.1134/S0081543808050088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543808050088

Keywords

Navigation