Skip to main content
Log in

Properties of Hamiltonian systems in the Pontryagin maximum principle for economic growth problems

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider an optimal control problem with a functional defined by an improper integral. We study the concavity properties of the maximized Hamiltonian and analyze the Hamiltonian systems in the Pontryagin maximum principle. On the basis of this analysis, we propose an algorithm for constructing an optimal trajectory by gluing the dynamics of the Hamiltonian systems. The algorithm is illustrated by calculating an optimal economic growth trajectory for macroeconomic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Intriligator, Mathematical Optimization and Economic Theory (SIAM, Philadelphia, PA, 2002; Airis-Press, Moscow, 2002).

    MATH  Google Scholar 

  2. K. J. Arrow, “Applications of Control Theory to Economic Growth,” in Mathematics of the Decision Sciences (Am. Math. Soc., Providence, RI, 1968), Part 2, pp. 85–119.

    Google Scholar 

  3. R. U. Ayres and B. Warr, “Accounting for Growth: The Role of Physical Work,” Struct. Change Econ. Dyn. 16(2), 181–209 (2005).

    Article  Google Scholar 

  4. R. M. Solow, Growth Theory: An Exposition (Oxford Univ. Press, New York, 1970).

    Google Scholar 

  5. K. Shell, “Applications of Pontryagin’s Maximum Principle to Economics,” in Mathematical Systems Theory and Economics (Springer, Berlin, 1969), Vol. 1, pp. 241–292.

    Google Scholar 

  6. A. M. Tarasyev and C. Watanabe, “Dynamic Optimality Principles and Sensitivity Analysis in Models of Economic Growth,” Nonlinear Anal., Theory Methods Appl. 47(4), 2309–2320 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  7. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Nauka, Moscow, 1976; Pergamon Press, Oxford, 1964).

    Google Scholar 

  8. S. M. Aseev and A. V. Kryazhimskii, The Pontryagin Maximum Principle and Optimal Economic Growth Problems (Nauka, Moscow, 2007), Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 257 [Proc. Steklov Inst. Math. 257 (2007)].

    Google Scholar 

  9. R. T. Rockafellar, Convex Analysis (Princeton Univ. Press, Princeton, NJ, 1970; Mir, Moscow, 1973).

    MATH  Google Scholar 

  10. Ph. Hartman, Ordinary Differential Equations (J. Wiley and Sons, New York, 1964).

    MATH  Google Scholar 

  11. N. N. Krasovskii and A. I. Subbotin, Positional Differential Games (Nauka, Moscow, 1974); Engl. transl.: Game-Theoretical Control Problems (Springer, New York, 1988).

    Google Scholar 

  12. E. J. Balder, “An Existence Result for Optimal Economic Growth Problems,” J. Math. Anal. Appl. 95, 195–213 (1983).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Krasovskii.

Additional information

Original Russian Text © A.A. Krasovskii, A.M. Tarasyev, 2008, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2008, Vol. 262, pp. 127–145.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasovskii, A.A., Tarasyev, A.M. Properties of Hamiltonian systems in the Pontryagin maximum principle for economic growth problems. Proc. Steklov Inst. Math. 262, 121–138 (2008). https://doi.org/10.1134/S0081543808030103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543808030103

Keywords

Navigation