Skip to main content
Log in

Does there exist a lebesgue measure in the infinite-dimensional space?

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider sigma-finite measures in the space of vector-valued distributions on a manifold X with the characteristic functional Ψ(f) = exp{−θ ∫X ln‖f(x)‖dx}, θ > 0. The collection of such measures constitutes a one-parameter semigroup relative to θ. In the case of scalar distributions and θ = 1, this measure may be called the infinite-dimensional Lebesgue measure. We prove that the weak limit of the Haar measures on the Cartan subgroups of the groups SL(n, ℝ), when n tends to infinity, is that infinite-dimensional Lebesgue measure. This measure is invariant under the linear action of some infinite-dimensional abelian group that can be viewed as an analog of an infinite-dimensional Cartan subgroup; this fact can serve as a justification of the name Lebesgue as a valid name for the measure in question. Application to the representation theory of current groups was one of the reasons to define this measure. The measure is also closely related to the Poisson-Dirichlet measures well known in combinatorics and probability theory. The only known example of analogous asymptotic behavior of the uniform measure on the homogeneous manifold is the classical Maxwell-Poincaré lemma, which states that the weak limit of uniform measures on the Euclidean spheres of appropriate radius, as dimension tends to infinity, is the standard infinite-dimensional Gaussian measure. Our situation is similar, but all the measures are no more finite but sigma-finite. The result raises an important question about the existence of other types of interesting asymptotic behavior of invariant measures on the homogeneous spaces of Lie groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Poincaré, Calcul des probabilités (Gautiher-Villars, Paris, 1912).

    MATH  Google Scholar 

  2. E. Borel, Introduction géométrique à quelques théories physiques (Gauthier-Villars, Paris, 1914).

    Google Scholar 

  3. E. Borel, “Sur les principes de la théorie cinétique des gaz,” Ann. Sci. Ec. Norm. Super., Sér. 3, 23, 9–32 (1906).

    MathSciNet  Google Scholar 

  4. F. G. Mehler, “Ueber die Entwicklung einer Function von beliebig vielen Variablen nach Laplaceschen Functionen höherer Ordnung,” J. Reine Angew. Math. 66, 161–176 (1866).

    MATH  Google Scholar 

  5. J. C. Maxwell, “On Boltzmann’s Theorem on the Average Distribution of Energy in a System of Material Points,” Trans. Cambridge Philos. Soc. 12, 547–570 (1878).

    Google Scholar 

  6. P. Cartier, “Le calcul des probabilités de Poincaré,” Preprint IHES/M/06/47 (IHES, Bures-sur-Yvette, 2006), http://www.ihes.fr/PREPRINTS/2006/M/M-06-47.pdf

    Google Scholar 

  7. D. W. Stroock, Probability Theory: An Analytic View (Cambridge Univ. Press, Cambridge, 1993).

    MATH  Google Scholar 

  8. M. Yor, Some Aspects of Brownian Motion, Part II: Some Recent Martingale Problems (Birkhäuser, Basel, 1997).

    Google Scholar 

  9. P. Diaconis and D. Freedman, “A Dozen de Finetti-Style Results in Search of a Theory,” Ann. Inst. H. Poincaré, Probab. Stat. 23(S2), 397–423 (1987).

    MathSciNet  Google Scholar 

  10. M. Yor and J. Pitman, “The Two-Parameter Poisson-Dirichlet Distribution Derived from a Stable Subordinator,” Ann. Probab. 25(2), 855–900 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  11. A. M. Vershik, “Measurable Realizations of Groups of Automorphisms, and Integral Representations of Positive Operators,” Sib. Mat. Zh. 28(1), 52–60 (1987) [Sib. Math. J. 28, 36-43 (1987)].

    MathSciNet  Google Scholar 

  12. A. M. Vershik, “Description of Invariant Measures for the Actions of Some Infinite-Dimensional Groups,” Dokl. Akad. Nauk SSSR 218(4), 749–752 (1974) [Sov. Math., Dokl. 15, 1396–1400 (1974)].

    MathSciNet  Google Scholar 

  13. A. M. Vershik, “Classification of Measurable Functions of Several Variables and Invariantly Distributed Random Matrices,” Funkts. Anal. Prilozh. 36(2), 12–27 (2002) [Funct. Anal. Appl. 36, 93–105 (2002)].

    MathSciNet  Google Scholar 

  14. A. M. Vershik, I. M. Gel’fand, and M. I. Graev, “Representations of the Group SL(2, R), Where R Is a Ring of Functions,” Usp. Mat. Nauk 28(5), 83–128 (1973) [Russ. Math. Surv. 28 (5), 87–132 (1973)].

    Google Scholar 

  15. A. M. Vershik, I. M. Gel’fand, and M. I. Graev, “Commutative Model of Representation of the Group of flows SL(2, R)X That Is Connected with a Unipotent Subgroup,” Funkts. Anal. Prilozh. 17(2), 70–72 (1983) [Funct. Anal. Appl. 17, 137–139 (1983)].

    MathSciNet  Google Scholar 

  16. I. M. Gel’fand, M. I. Graev, and A. M. Vershik, “Models of Representations of Current Groups,” in Representations of Lie Groups and Lie Algebras, Ed. by A. A. Kirillov (Akad. Kiado, Budapest, 1985), pp. 121–179.

    Google Scholar 

  17. A. M. Vershik and M. I. Graev, “A Commutative Model of a Representation of the Group O(n,1)X and a Generalized Lebesgue Measure in the Space of Distributions,” Funkts. Anal. Prilozh. 39(2), 1–12 (2005) [Funct. Anal. Appl. 39, 81–90 (2005)].

    MathSciNet  Google Scholar 

  18. M. I. Graev and A. M. Vershik, “The Basic Representation of the Current Group O(n,1)X in the L 2 Space over the Generalized Lebesgue Measure,” Indag. Math. 16(3–4), 499–529 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  19. N. Tsilevich, A. Vershik, and M. Yor, “An Infinite-Dimensional Analogue of the Lebesgue Measure and Distinguished Properties of the Gamma Process,” J. Funct. Anal. 185(1), 274–296 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  20. J. F. C. Kingman, Poisson Processes (Clarendon Press, Oxford, 1993).

    MATH  Google Scholar 

  21. A. M. Vershik and A. A. Shmidt, “Symmetric Groups of High Degree,” Dokl. Akad. Nauk SSSR 206(2), 269–272 (1972) [Sov. Math., Dokl. 13, 1190–1194 (1972)].

    MathSciNet  Google Scholar 

  22. A. M. Vershik and A. A. Shmidt, “Limit Measures Arising in the Asymptotic Theory of Symmetric Groups. I, II,” Teor. Veroyatn. Primen. 22(1), 72–88 (1977) [Theory Probab. Appl. 22, 70–85 (1977)]; Teor. Veroyatn. Primen. 23 (1), 42–54 (1978) [Theory Probab. Appl. 23, 36–49 (1978)].

    Google Scholar 

  23. Ts. Ignatov, “On a Constant Arising in the Asymptotic Theory of Symmetric Groups, and on Poisson-Dirichlet Measures,” Teor. Veroyatn. Primen. 27(1), 129–140 (1982) [Theory Probab. Appl. 27, 136–147 (1982)].

    MATH  MathSciNet  Google Scholar 

  24. A. M. Vershik, “The Asymptotic Distribution of Factorizations of Natural Numbers into Prime Divisors,” Dokl. Akad. Nauk SSSR 289(2), 269–272 (1986) [Sov. Math., Dokl. 34, 57–61 (1987)].

    MathSciNet  Google Scholar 

  25. V. I. Arnold, “Vershik Work Needs Acknowledgement,” Notices Am. Math. Soc. 45(5), 568 (1998).

    Google Scholar 

  26. N. V. Tsilevich, “Stationary Random Partitions of a Natural Series,” Teor. Veroyatn. Primen. 44(1), 55–73 (1999) [Theory Probab. Appl. 44, 60–74 (2000)].

    MathSciNet  Google Scholar 

  27. P. Diaconis, E. Mayer-Wolf, O. Zeitouni, and M. P. W. Zerner, “The Poisson-Dirichlet Law Is the Unique Invariant Distribution for Uniform Split-Merge Transformations,” Ann. Probab. 32, 915–938 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  28. P. Billingsley, “On the Distribution of Large Prime Divisors,’ Period Math. Hung. 2, 283–289 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  29. R. Arratia, A. D. Barbour, and S. Tavaré, Logarithmic Combinatorial Structures: A Probabilistic Approach (Eur. Math. Soc., Zürich, 2003), EMS Monogr. Math.

    Book  MATH  Google Scholar 

  30. G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory (Cambridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  31. M. Yor, “Some Remarkable Properties of Gamma Processes,” in Advances in Mathematical Finance (Birkhäuser, Boston, 2007), pp. 37–47.

    Chapter  Google Scholar 

  32. A. Vershik and M. Yor, “Multiplicativite du processus gamma etetude asymptotique des lois stables d’indice α, lorsque α tend vers 0,’ Prepubl. 289 (Lab. Probab., Univ. Paris VI, 1995).

  33. A. M. Vershik and N. V. Tsilevich, “Fock Factorizations, and Decompositions of the L 2 Spaces over General Lévy Processes,” Usp. Mat. Nauk 58(3), 3–50 (2003) [Russ. Math. Surv. 58, 427–472 (2003)].

    MathSciNet  Google Scholar 

  34. J. von Neumann, “Approximative Properties of Matrices of High Finite Order,” Port. Math. 3, 1–62 (1942).

    MATH  Google Scholar 

  35. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Fizmatgiz, Moscow, 1963; Academic, San Diego, CA, 2000).

    Google Scholar 

  36. E. Glasner, B. Tsirelson, and B. Weiss, “The Autormorphism Group of the Gaussian Measure Cannot Act Pointwise,” Isr. J. Math. 148, 305–329 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  37. S. Kerov, G. Olshanski, and A. Vershik, “Harmonic Analysis on the Infinite Symmetric Group,” Invent. Math. 158(3), 551–642 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  38. A. Weil, L’intégration dans les groupes topologiques et ses applications (Hermann, Paris, 1940), Actual. Sci. Ind. 869.

    Google Scholar 

  39. A. M. Vershik and M. I. Graev, “Integral Models of the Representations of the Current Groups,” Funkts. Anal. Prilozh. 42 (2008) (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Vershik.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2007, Vol. 259, pp. 256–281.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vershik, A.M. Does there exist a lebesgue measure in the infinite-dimensional space?. Proc. Steklov Inst. Math. 259, 248–272 (2007). https://doi.org/10.1134/S0081543807040153

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543807040153

Keywords

Navigation