Skip to main content
Log in

Singularities and noncommutative Frobenius manifolds

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We prove that the quaternionic miniversal deformations of an A n singularity have the structure of a noncommutative Frobenius manifold in the sense of the extended cohomological field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Alexeevski and S. Natanzon, “Noncommutative Two-Dimensional Topological Field Theories and Hurwitz Numbers for Real Algebraic Curves,” math.GT/0202164.

  2. V. I. Arnold, A. N. Varchenko, and S. M. Gusein-Zade, Singularities of Differentiable Maps, Vol. 1: The Classification of Critical Points, Caustics and Wave Fronts (Nauka, Moscow, 1982; Birkhäuser, Boston, 1985); Vol. 2: Mondromy and Asymptotics of Integrals (Nauka, Moscow, 1984; Birkhäuser, Boston, 1988).

    Google Scholar 

  3. M. Atiyah, “Topological Quantum Field Theories,” Publ. Math., Inst. Hautes Étud. Sci. 68, 175–186 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Dijkgraaf, “Geometrical Approach to Two-Dimensional Conformal Field Theory,” Ph.D. Thesis (Utrecht, 1989).

  5. R. Dijkgraaf, E. Verlinde, and H. Verlinde, “Topological Strings in d < 1,” Nucl. Phys. B 352, 59–86 (1991).

    Article  MathSciNet  Google Scholar 

  6. B. Dubrovin, “Geometry of 2D Topological Field Theories,” in Integrable Systems and Quantum Groups (Springer, Berlin, 1996), Lect. Notes Math. 1620, pp. 120–348.

    Chapter  Google Scholar 

  7. C. Faith, Algebra: Rings, Modules and Categories. I (Springer, Berlin, 1973).

    MATH  Google Scholar 

  8. M. Kontsevich and Yu. Manin, “Gromov-Witten Classes, Quantum Cohomology, and Enumerative Geometry,” Commun. Math. Phys. 164, 525–562 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  9. C. I. Lazariu, “On the Structure of Open-Closed Topological Field Theory in Two Dimensions,” Nucl. Phys. B 603, 497–530 (2001).

    Article  Google Scholar 

  10. Yu. I. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces (Am. Math. Soc., Providence, RI, 1999; Factorial, Moscow, 2002), AMS Colloq. Publ. 47.

    MATH  Google Scholar 

  11. G. Moore, “D-Branes, RR-Fields and K-Theory. II,” http://online.itp.ucsb.edu/online/mp01/moore2

  12. S. M. Natanzon, “Structures de Dubrovin,” Preprint 1977/26 (Inst. Rech. Math. Avancée, Strasbourg, 1997).

    Google Scholar 

  13. S. M. Natanzon, “Formulas for A n-and B n-Solutions of WDVV Equations,” J. Geom. Phys. 39, 323–336 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  14. S. M. Natanzon, “Extended Cohomological Field Theories and Noncommutative Frobenius Manifolds,” J. Geom. Phys. 51, 387–403 (2003).

    Article  MathSciNet  Google Scholar 

  15. K. Saito, “On a Linear Structure of a Quotient Variety by a Finite Reflection Group,” Publ. Res. Inst. Math. Sci. 29(4), 535–579 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  16. V. Turaev, “Homotopy Field Theory in Dimension 2 and Group-Algebras,” math.GT/9910010.

  17. C. Vafa, “Topological Landau-Ginzburg Models,” Mod. Phys. Lett. A 6(4), 337–346 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  18. E. Witten, “On the Structure of the Topological Phase of Two-Dimensional Gravity,” Nucl. Phys. B 340, 281–332 (1990).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Natanzon.

Additional information

Dedicated to V.I. Arnold

Original Russian Text © S.M. Natanzon, 2007, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2007, Vol. 259, pp. 143–155.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natanzon, S.M. Singularities and noncommutative Frobenius manifolds. Proc. Steklov Inst. Math. 259, 137–148 (2007). https://doi.org/10.1134/S0081543807040104

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543807040104

Keywords

Navigation