V. V. Batyrev, “Non-Archimedean Integrals and Stringy Euler Numbers of Log-Terminal Pairs,” J. Eur. Math. Soc. 1, 5–33 (1999).
MATH
Article
MathSciNet
Google Scholar
J. Burillo, “The Poincaré-Hodge Polynomial of a Symmetric Product of Compact Kähler Manifolds,” Collect. Math. 41, 59–69 (1990).
MATH
MathSciNet
Google Scholar
J. Cheah, “On the Cohomology of Hilbert Schemes of Points,” J. Algebr. Geom. 5, 479–511 (1996).
MATH
MathSciNet
Google Scholar
J. Cheah, “The Virtual Hodge Polynomials of Nested Hilbert Schemes and Related Varieties,” Math. Z. 227, 479–504 (1998).
MATH
Article
MathSciNet
Google Scholar
J. Cheah, “Cellular Decompositions for Nested Hilbert Schemes of Points,” Pac. J. Math. 183, 39–90 (1998).
MATH
MathSciNet
Article
Google Scholar
L. Dixon, J. A. Harvey, C. Vafa, and E. Witten, “Strings on Orbifolds. I,” Nucl. Phys. B 261, 678–686 (1985).
Article
MathSciNet
Google Scholar
L. Göttsche, “On the Motive of the Hilbert Scheme of Points on a Surface,” Math. Res. Lett. 8, 613–627 (2001).
MATH
MathSciNet
Google Scholar
S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, “A Power Structure over the Grothendieck Ring of Varieties,” Math. Res. Lett. 11, 49–57 (2004).
MATH
MathSciNet
Google Scholar
S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, “Power Structure over the Grothendieck Ring of Varieties and Generating Series of Hilbert Schemes of Points,” Mich. Math. J. 54(2), 353–359 (2006); math.AG/0407204.
MATH
Google Scholar
S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, “Integration over Spaces of Nonparametrized Arcs and Motivie Versions of the Monodromy Zeta Function,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 252, 71–82 (2006) [Proc. Steklov Inst. Math. 252, 63–73 (2006)].
Google Scholar
M. Kapranov, “The Elliptic Curve in the S-Duality Theory and Eisenstein Series for Kac-Moody Groups,” math.AG/0001005.
W.-P. Li and Zh. Qin, “On the Euler Numbers of Certain Moduli Spaces of Curves and Points,” math.AG/0508132.
I. G. Macdonald, “The Poincaré Polynomial of a Symmetric Product,” Proc. Cambridge Philos. Soc. 58, 563–568 (1962).
MATH
MathSciNet
Article
Google Scholar
H. Tamanoi, “Generalized Orbifold Euler Characteristic of Symmetric Products and Equivariant Morava K-Theory,” Algebr. Geom. Topology 1, 115–141 (2001).
MATH
Article
MathSciNet
Google Scholar
W. Wang, “Equivariant K-Theory, Wreath Products, and Heisenberg Algebra,” Duke Math. J. 103, 1–23 (2000).
MATH
Article
MathSciNet
Google Scholar
W. Wang and J. Zhou, “Orbifold Hodge Numbers of Wreath Product Orbifolds,” J. Geom. Phys. 38, 152–169 (2001).
Article
MathSciNet
Google Scholar
E. Zaslow, “Topological Orbifold Models and Quantum Cohomology Rings,” Commun. Math. Phys. 156, 301–331 (1993).
MATH
Article
MathSciNet
Google Scholar