Abstract
We study the limiting case of the Krichever construction of orthogonal curvilinear coordinate systems when the spectral curve becomes singular. We show that when the curve is reducible and all its irreducible components are rational curves, the construction procedure reduces to solving systems of linear equations and to simple computations with elementary functions. We also demonstrate how well-known coordinate systems, such as polar coordinates, cylindrical coordinates, and spherical coordinates in Euclidean spaces, fit in this scheme.
References
A. A. Akhmetshin, Yu. S. Vol’vovskii, and I. M. Krichever, “Discrete Analogs of the Darboux-Egorov Metrics,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 225, 21–45 (1999) [Proc. Steklov Inst. Math. 225, 16–39 (1999)].
G. Darboux, Leçons sur le systèmes ortogonaux et les coordonnées curvilignes (Gauthier-Villars, Paris, 1910).
I. M. Krichever, “Algebraic-Geometric n-Orthogonal Curvilinear Coordinate Systems and Solutions of Associativity Equations,” Funkts. Anal. Pril. 31(1), 32–50 (1997) [Funct. Anal. Appl. 31, 25–39 (1997)].
O. I. Mokhov, “Compatible Metrics of Constant Riemannian Curvature: Local Geometry, Nonlinear Equations, and Integrability,” Funkts. Anal. Pril. 36(3), 36–47 (2002) [Funct. Anal. Appl. 36, 196–204 (2002)].
J.-P. Serre, Algebraic Groups and Class Fields (Springer, New York, 1988), Grad. Texts Math. 117.
I. A. Taimanov, “On Two-Dimensional Finite-Gap Potential Schrödinger and Dirac Operators with Singular Spectral Curves,” Sib. Mat. Zh. 44(4), 870–882 (2003) [Sib. Math. J. 44, 686–694 (2003)].
I. A. Taimanov, “Finite-Gap Theory of the Clifford Torus,” Int. Math. Res. Not., No. 2, 103–120 (2005).
D. V. Talalaev and A. V. Chervov, “Hitchin System on Singular Curves,” Teor. Mat. Fiz. 140(2), 179–215 (2004) [Theor. Math. Phys. 140, 1043–1072 (2004)].
V. E. Zakharov, “Description of the n-Orthogonal Curvilinear Coordinate Systems and Hamiltonian Integrable Systems of Hydrodynamic Type. I: Integration of the Lamé Equations,” Duke Math. J. 94, 103–139 (1998).
Author information
Authors and Affiliations
Additional information
Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Vol. 255, pp. 180–196.
Rights and permissions
About this article
Cite this article
Mironov, A.E., Taimanov, I.A. Orthogonal curvilinear coordinate systems corresponding to singular spectral curves. Proc. Steklov Inst. Math. 255, 169–184 (2006). https://doi.org/10.1134/S0081543806040146
Received:
Issue Date:
DOI: https://doi.org/10.1134/S0081543806040146