Skip to main content
Log in

Orthogonal curvilinear coordinate systems corresponding to singular spectral curves

Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We study the limiting case of the Krichever construction of orthogonal curvilinear coordinate systems when the spectral curve becomes singular. We show that when the curve is reducible and all its irreducible components are rational curves, the construction procedure reduces to solving systems of linear equations and to simple computations with elementary functions. We also demonstrate how well-known coordinate systems, such as polar coordinates, cylindrical coordinates, and spherical coordinates in Euclidean spaces, fit in this scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A. A. Akhmetshin, Yu. S. Vol’vovskii, and I. M. Krichever, “Discrete Analogs of the Darboux-Egorov Metrics,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 225, 21–45 (1999) [Proc. Steklov Inst. Math. 225, 16–39 (1999)].

    MathSciNet  Google Scholar 

  2. G. Darboux, Leçons sur le systèmes ortogonaux et les coordonnées curvilignes (Gauthier-Villars, Paris, 1910).

    Google Scholar 

  3. I. M. Krichever, “Algebraic-Geometric n-Orthogonal Curvilinear Coordinate Systems and Solutions of Associativity Equations,” Funkts. Anal. Pril. 31(1), 32–50 (1997) [Funct. Anal. Appl. 31, 25–39 (1997)].

    MathSciNet  Google Scholar 

  4. O. I. Mokhov, “Compatible Metrics of Constant Riemannian Curvature: Local Geometry, Nonlinear Equations, and Integrability,” Funkts. Anal. Pril. 36(3), 36–47 (2002) [Funct. Anal. Appl. 36, 196–204 (2002)].

    MathSciNet  Google Scholar 

  5. J.-P. Serre, Algebraic Groups and Class Fields (Springer, New York, 1988), Grad. Texts Math. 117.

    MATH  Google Scholar 

  6. I. A. Taimanov, “On Two-Dimensional Finite-Gap Potential Schrödinger and Dirac Operators with Singular Spectral Curves,” Sib. Mat. Zh. 44(4), 870–882 (2003) [Sib. Math. J. 44, 686–694 (2003)].

    MathSciNet  Google Scholar 

  7. I. A. Taimanov, “Finite-Gap Theory of the Clifford Torus,” Int. Math. Res. Not., No. 2, 103–120 (2005).

  8. D. V. Talalaev and A. V. Chervov, “Hitchin System on Singular Curves,” Teor. Mat. Fiz. 140(2), 179–215 (2004) [Theor. Math. Phys. 140, 1043–1072 (2004)].

    MathSciNet  Google Scholar 

  9. V. E. Zakharov, “Description of the n-Orthogonal Curvilinear Coordinate Systems and Hamiltonian Integrable Systems of Hydrodynamic Type. I: Integration of the Lamé Equations,” Duke Math. J. 94, 103–139 (1998).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Vol. 255, pp. 180–196.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mironov, A.E., Taimanov, I.A. Orthogonal curvilinear coordinate systems corresponding to singular spectral curves. Proc. Steklov Inst. Math. 255, 169–184 (2006). https://doi.org/10.1134/S0081543806040146

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543806040146

Keywords

Navigation