Skip to main content
Log in

Abstract

Contact immersions of contact manifolds endowed with the associated Carnot-Carathéodory (CC) metric (for example, immersions of the Heisenberg group H 3 ∼ ℝ 3CC in itself) are considered. It is assumed that the manifolds have the same dimension and the immersions are quasiconformal with respect to the CC metric. The main assertion is as follows: A quasiconformal immersion of the Heisenberg group in itself, just as a quasiconformal immersion of any contact manifold of conformally parabolic type in a simply connected contact manifold, is globally injective; i.e., such an immersion is an embedding, which, in addition, is surjective in the case of the Heisenberg group. Thus, the global homeomorphism theorem, which is well known in the space theory of quasiconformal mappings, also holds in the contact case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Lavrent’ev, “On a Differential Criterion for Homeomorphic Mappings of Three-Dimensional Domains,” Dokl. Akad. Nauk SSSR 20, 241–242 (1938).

    Google Scholar 

  2. V. A. Zorich, “A Theorem of M.A. Lavrent’ev on Quasiconformal Space Maps,” Mat. Sb. 74, 417–433 (1967) [Math. USSR, Sb. 3, 389–403 (1967)].

    MATH  MathSciNet  Google Scholar 

  3. V. A. Zorich, “The Global Homeomorphism Theorem for Space Quasiconformal Mappings, Its Development and Related Open Problems,” in Quasiconformal Space Mappings: Collected Surv. 1960–1990 (Springer, Berlin, 1992), Lect. Notes Math. 1508, pp. 131–148.

    Google Scholar 

  4. V. A. Zorich, “Quasi-conformal Maps and the Asymptotic Geometry of Manifolds,” Usp. Mat. Nauk 57(3), 3–28 (2002) [Russ. Math. Surv. 57, 437–462 (2002)].

    MATH  MathSciNet  Google Scholar 

  5. M. Gromov, “Hyperbolic Manifolds, Groups and Actions,” in Riemann Surfaces and Related Topics: Proc. 1978 Stony Brook Conf. (Princeton Univ. Press, Princeton, NJ, 1981), Ann. Math. Stud. 97, pp. 183–213.

    Google Scholar 

  6. M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, with appendices by M. Katz, P. Pansu, and S. Semmes (Birkhäuser, Boston, 1999).

    Google Scholar 

  7. V. A. Zorich, “Quasiconformal Immersions of Riemannian Manifolds, and a Picard Type Theorem,” Funkts. Anal. Prilozh. 34(3), 37–48 (2000) [Funct. Anal. Appl. 34, 188–196 (2000)].

    MATH  MathSciNet  Google Scholar 

  8. V. A. Zorich and V. M. Kessel’man, “On the Conformal Type of a Riemannian Manifold,” Funkts. Anal. Prilozh. 30(2), 40–55 (1996) [Funct. Anal. Appl. 30, 106–117 (1996)].

    MATH  Google Scholar 

  9. V. A. Zorich, “Asymptotic Geometry and Conformal Types of Carnot-Carathéodory Spaces,” Geom. Funct. Anal. 9(2), 393–411 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  10. G. D. Mostow, Strong Rigidity of Locally Symmetric Spaces (Princeton Univ. Press, Princeton, NJ, 1973), Ann. Math. Stud. 78.

    Google Scholar 

  11. Sub-Riemannian Geometry, Ed. by A. Bellaiche and J.-J. Risler (Birkhäuser, Basel, 1996), Progr. Math. 144.

    Google Scholar 

  12. A. Korányi and H. M. Reimann, “Foundation for the Theory of Quasiconformal Mappings on the Heisenberg Group,” Adv. Math. 111(1), 1–87 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Korányi and H. M. Reimann, “Horizontal Normal Vectors and Conformal Capacity of Spherical Rings in the Heisenberg Group,” Bull. Sci. Math., Sér. 2, 111(1), 3–21 (1987).

    MATH  Google Scholar 

  14. H. M. Reimann, “An Estimate for Pseudoconformal Capacities on the Sphere,” Ann. Acad. Sci. Fenn. AI: Math. 14(2), 315–324 (1989).

    MATH  MathSciNet  Google Scholar 

  15. P. Pansu, “Métriques de Carnot-Carathéodory et quasi-isométries des espaces symétriques de rang un,” Ann. Math. 129, 1–60 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  16. V. A. Zorich, “On Contact Quasi-conformal Immersions,” Usp. Mat. Nauk 60(2), 161–162 (2005) [Russ. Math. Surv. 60, 382–384 (2005)].

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Zorich, 2006, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Vol. 253, pp. 81–87.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zorich, V.A. Contact quasiconformal immersions. Proc. Steklov Inst. Math. 253, 71–77 (2006). https://doi.org/10.1134/S0081543806020076

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543806020076

Keywords

Navigation