Skip to main content
Log in

Assessing the Effectiveness of NPP Participation in Covering Peak Electrical Loads Based on Hydrogen Technology

  • NUCLEAR POWER PLANTS
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

One of the goals of the Russian Energy Strategy until 2035 is the development of hydrogen energy, namely, achieving global leadership in the export of hydrogen obtained from the use of energy from renewable sources and nuclear power plants. Further development of nuclear energy involves its production at existing nuclear power plants. One of the real examples is the production of hydrogen by electrolysis of water at the Kola Nuclear Power Plant. Currently, active research is being conducted in the field of hydrogen energy, and effective technologies for water electrolysis and reversible fuel cells (RFC) are being developed, which are used, among other things, in decentralized energy supply systems. The achieved overall efficiency of 37.18 and 49.80% with specific capital investments in the ranges of 1595–2050 and 1828–2396 $/kW in RFCs with solid polymer and solid oxide electrolytes, respectively, allows us to consider them as a means of storage during hours of reduced generation (off-peak) electricity from nuclear power plants. A universal (generalized) scheme for the use of hydrogen technologies at nuclear power plants has been developed based on combining systems of “hot” combustion of hydrogen in an oxygen environment to produce high-parameter water vapor (temperatures up to 3600 K at a pressure of 6 MPa) and “cold” combustion of hydrogen in fuel cells, including reversible ones. A comparative assessment of the technical and economic efficiency of peak electricity production based on the proposed options for hydrogen technologies used at nuclear power plants was carried out. Capital investments in RFC have been determined, which ensure equal technical and economic efficiency of peak electricity production when implementing the considered options. Nomograms have been developed to determine the cost of production during peak hours depending on tariffs and volumes of consumption during the off-peak period as well as capital investments in RFC. As calculations have shown, the cost of its production is 1.52–2.93 rubles/(kW h). Taking into account the useful service life of RFC leads to a significant increase in cost: it varies from 3.74 to 6.53 rubles/(kW h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Notes

  1. Equilibrium specific capital investments in RFC: investments that ensure equal production costs of peak electricity in comparison with HTA.

REFERENCES

  1. T. Mitrova, Yu. Mel’nikov, and D. Chugunov, Hydrogen Economics — A Path to Low-Carbon Development (Shk. Upr. Skolkovo, Moscow, 2019) [in Russian].

    Google Scholar 

  2. Energy Strategy of Russia until 2035 (Pravitel’stvo Rossii, Moscow, 2020) [in Russian].

  3. R. A. Golovin, Business Strategy of State Corporation “Rosatom” (Moscow, 2018) [in Russian].

    Google Scholar 

  4. STO (Standard) 59012820.27.120.20.004-2013. Norms for Participation of Power Units of Nuclear Power Plants in Normalized Primary Frequency Regulation (Sist. Oper. Edin. Energ. Sist., Moscow, 2013).

  5. R. Elder and R. Allen, “Nuclear heat for hydrogen production: Coupling a very high/high temperature reactor to a hydrogen production plant,” Prog. Nucl. Energy 51, 500–525 (2009). https://doi.org/10.1016/j.pnucene.2008.11.001

    Article  CAS  Google Scholar 

  6. J. Coleman, S. Bragg-Sitton, and E. Dufek, An Evaluation of Energy Storage Options for Nuclear Power (International Atomic Energy Agency, 2017).

    Google Scholar 

  7. R. J. Soja, M. B. Gusau, U. Ismaila, and N. N. Garba, “Comparative analysis of associated cost of nuclear hydrogen production using IAEA hydrogen cost estimation program,” Int. J. Hydrogen Energy 48, 23373–23386 (2023). https://doi.org/10.1016/j.ijhydene.2023.03.133

    Article  CAS  Google Scholar 

  8. Z. Deng, J. Du, J. Tian, Z. Gan, B. Wang, and C. Zhao, “Toward to hydrogen energy of electric power: Characteristics and main case studies in Shenzhen,” Processes 11, 728–749 (2023). https://doi.org/10.3390/pr11030728

    Article  CAS  Google Scholar 

  9. R. Z. Aminov and A. N. Bairamov, “Current state and prospects of hydrogen production at NPPs,” Therm. Eng. 68, 663–672 (2021). https://doi.org/10.1134/S0040601521080012

    Article  Google Scholar 

  10. A. N. Egorov, “Efficiency of off-peak electricity conversion at nuclear power plants using reversible fuel cells,” in Proc. Int. Conf. on Automatics and Energy (ICAE 2021), Vladivostok, Russia, Oct. 7–8. 2021; J. Phys.: Conf. Ser. 2096, 012193 (2021). https://doi.org/10.1088/1742-6596/2096/1/012193

    Article  Google Scholar 

  11. A. N. Egorov and V. E. Yurin, “Comprehensive methodology for identifying tariff zones of efficiency of hydrogen-thermal accumulation system at the NPP,” Int. J. Hydrogen Energy 46, 34097–34104 (2021). https://doi.org/10.1016/j.ijhydene.2021.08.030

    Article  CAS  Google Scholar 

  12. M. Wei, G. Levis, and A. Mayyas, Reversible Fuel Cell Cost Analysis (Lawrence Berkeley National Laboratory, Department of Energy’s Fuel Cell Technologies Office, 2020).

    Google Scholar 

  13. W. Han, I. Kim, M. Kim, C. W. Chul, S.-K. Kim, J. H. Joo, Y.-W. Lee, Y. Cho, H.-S. Cho, and C.‑H. Kim, “Directly sputtered nickel electrodes for alkaline water electrolysis,” Electrochim. Acta 386, 138458 (2021). https://doi.org/10.1016/j.electacta.2021.138458

    Article  CAS  Google Scholar 

  14. D. Jang, H.-S. Cho, and S. Kang, “Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system,” Appl. Energy 287, 116554 (2021). https://doi.org/10.1016/j.apenergy.2021.116554

    Article  CAS  Google Scholar 

  15. D. Jang, W. Choi, H.-S. Cho, W. C. Cho, C. H. Kim, and S. Kang, “Numerical modeling and analysis of the temperature effect on the performance of an alkaline water electrolysis system,” J. Power Sources 506, 230106 (2021). https://doi.org/10.1016/j.jpowsour.2021.230106

    Article  CAS  Google Scholar 

  16. M. Sánchez-Molina, E. Amores, N. Rojas, and M. Kunowsky, “Additive manufacturing of bipolar plates for hydrogen production in proton exchange membrane water electrolysis cells,” Int. J. Hydrogen Energy 46, 38983–38991 (2021). https://doi.org/10.1016/j.ijhydene.2021.09.152

    Article  CAS  Google Scholar 

  17. E. López-Fernández, C. Gómez-Sacedón, J. Gil-Rostra, J. P. Espinós, A. R. González-Elipe, F. Yubero, and A. de Lucas-Consuegra, “Ionomer-free nickel-iron bimetallic electrodes for efficient anion exchange membrane water electrolysis,” Chem. Eng. J. 433, 133774 (2022). https://doi.org/10.1016/j.cej.2021.133774

    Article  CAS  Google Scholar 

  18. S. G. Kamiel, S. E. Rami, and C. Zamfirescu, “Technoeconomics of large-scale clean hydrogen production — A review,” Int. J. Hydrogen Energy 47, 30788–30798 (2022). https://doi.org/10.1016/j.ijhydene.2021.10.081

    Article  CAS  Google Scholar 

  19. H. H. Cho, V. Strezov, and T. J. Evans, “A review on global warming potential, challenges and opportunities of renewable hydrogen production technologies,” Sustainable Mater. Technol. 35, e00567 (2023). https://doi.org/10.1016/j.susmat.2023.e00567

    Article  CAS  Google Scholar 

  20. S. K. Dash, S. Chakraborty, and D. Elangovan, “A brief review of hydrogen production methods and their challenges,” Energies 16, 1141 (2023). https://doi.org/10.3390/en16031141

    Article  CAS  Google Scholar 

  21. N. Wang, C. Tang, L. Du, Z.-Q. Liu, W. Li, Z. Song, Y. Aoki, and S. Ye, “Single-phase La0.8Sr0.2Co1–xMnxO3–δ electrocatalyst as a triple H+/O2–/e conductor enabling high-performance intermediate-temperature water electrolysis,” J. Materiomics 8, 1020–1030 (2022). https://doi.org/10.1016/j.jmat.2022.02.012

    Article  Google Scholar 

  22. L. Lin, S. Piao, Y. Choi, L. Lyu, H. Hong, D. Kim, J. Lee, W. Zhang, and Y. Piao, “Nanostructured transition metal nitrides as emerging electrocatalysts for water electrolysis: Status and challenges,” Energy Chem. 4, 100072 (2022). https://doi.org/10.1016/j.enchem.2022.100072

    Article  CAS  Google Scholar 

  23. Z. Hua, X. Wu, Z. Zhu, J. He, S. He, H. Liu, L. Xu, Y. Yang, and Z. Zhao, “One-step controllable fabrication of 3D structured self-standing Al3Ni2/Ni electrode through molten salt electrolysis for efficient water splitting,” Chem. Eng. J. 427, 131743 (2022). https://doi.org/10.1016/j.cej.2021.131743

    Article  CAS  Google Scholar 

  24. K. M. Cho, P. R. Deshmukh, and W. G. Shin, “Hydrodynamic behavior of bubbles at gas-evolving electrode in ultrasonic field during water electrolysis,” Ultrason. Sonochem. 80, 105796 (2021). https://doi.org/10.1016/j.ultsonch.2021.105796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. L. Wan, Z. Xu, P. Wang, Y. Lin, and B. Wang, “H2SO4-doped polybenzimidazole membranes for hydrogen production with acid–alkaline amphoteric water electrolysis,” J. Membrane Sci. 618, 118642 (2021). https://doi.org/10.1016/j.memsci.2020.118642

    Article  CAS  Google Scholar 

  26. B. Lv, Z. Shao, Z. Luan, Z. Huang, S. Sun, Y. Teng, C. Miu, and Q. Gao, “Novel polybenzimidazole/graphitic carbon nitride nanosheets composite membrane for the application of acid-alkaline amphoteric water electrolysis,” J. Energy Chem. 64, 607–614 (2022). https://doi.org/10.1016/j.jechem.2021.05.009

    Article  CAS  Google Scholar 

  27. S. Chen, W. Zhou, Y. Ding, G. Zhao, and J. Gao, “\({\text{Fe}}_{3}^{ + }\)-mediated coal-assisted water electrolysis for hydrogen production: Roles of mineral matter and oxygen-containing functional groups in coal,” Energy 220, 119677 (2021). https://doi.org/10.1016/j.energy.2020.11967710.1016/j.energy.2020.119677

    Article  CAS  Google Scholar 

  28. M. Sartory, E. Wallnöfer-Ogris, P. Salman, T. Fellinger, M. Justl, A. Trattner, and M. Klell, “Theoretical and experimental analysis of an asymmetric high pressure PEM water electrolyser up to 155 bar,” Int. J. Hydrogen Energy 42, 30493–30508 (2017). https://doi.org/10.1016/j.ijhydene.2017.10.112

    Article  CAS  Google Scholar 

  29. M. Schalenbach, M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, “Pressurized PEM water electrolysis: Efficiency and gas crossover,” Int. J. Hydrogen Energy 38, 14921–14933 (2013). https://doi.org/10.1016/j.ijhydene.2013.09.013

    Article  CAS  Google Scholar 

  30. B. Lee, J. Heo, S. Kim, C. Sung, C. Moon, S. Moon, and H. Lim, “Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations,” Energy Convers. Manage. 162, 139–144 (2018). https://doi.org/10.1016/j.enconman.2018.02.041

    Article  CAS  Google Scholar 

  31. Purnami, N. Hamidi, M. N. Sasongko, D. Widhiyanuriyawan, and I. N. G. Wardana, “Strengthening external magnetic fields with activated carbon graphene for increasing hydrogen production in water electrolysis,” Int. J. Hydrogen Energy 45, 19370–19380 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.148

    Article  CAS  Google Scholar 

  32. H. Liu, H. Xu, L. Pan, D. Zhong, and Y. Liu, “Porous electrode improving energy efficiency under electrode-normal magnetic field in water electrolysis,” Int. J. Hydrogen Energy 44, 22780–22786 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.024

    Article  CAS  Google Scholar 

  33. H. Liu, L. Pan, Q. Qin, and P. Li, “Experimental and numerical investigation of gas–liquid flow in water electrolysis under magnetic field,” J. Electroanal. Chem. 832, 293–302 (2019). https://doi.org/10.1016/j.jelechem.2018.11.020

    Article  CAS  Google Scholar 

  34. D. Jang, J. Kim, D. Kim, W.-B. Han, and S. Kang, “Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies,” Energy Convers. Manage. 258, 115499 (2022). https://doi.org/10.1016/j.enconman.2022.115499

    Article  CAS  Google Scholar 

  35. S. Y. Kang, J. E. Park, G. Y. Jang, O.-H. Kim, O. J. Kwon, Y.-H. Cho, and Y.-E. Sung, “High-performance and durable water electrolysis using a highly conductive and stable anion-exchange membrane,” Int. J. Hydrogen Energy 47, 9115–9126 (2022). https://doi.org/10.1016/j.ijhydene.2022.01.002

    Article  CAS  Google Scholar 

  36. L. Wan, Z. Xu, and B. Wang, “Green preparation of highly alkali-resistant PTFE composite membranes for advanced alkaline water electrolysis,” Chem. Eng. J. 426, 131340 (2021). https://doi.org/10.1016/j.cej.2021.131340

    Article  CAS  ADS  Google Scholar 

  37. J. E. O’Briena, J. L. Hartvigsen, R. D. Boardman, J. J. Hartvigsen, D. Larsen, and S. Elangovan, “A 25 kW high temperature electrolysis facility for flexible hydrogen production and system integration studies,” Int. J. Hydrogen Energy 45, 15796–15804 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.074

    Article  CAS  Google Scholar 

  38. A. Buttler, R. Koltun, R. Wolf, and H. Spliethoff, “A detailed techno-economic analysis of heat integration in high temperature electrolysis for efficient hydrogen production,” Int. J. Hydrogen Energy 40, 38–50 (2015). https://doi.org/10.1016/j.ijhydene.2014.10.048

    Article  CAS  Google Scholar 

  39. Y. Li, D. W. Chen, M. Liu, and R. Z. Wang, “Life cycle cost and sensitivity analysis of a hydrogen system using low-price electricity in China,” Int. J. Hydrogen Energy 42, 1899–1911 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.149

    Article  CAS  Google Scholar 

  40. R. Y. Kannah, S. Kavitha, O. Preethi, P. Karthikeyan, G. Kumar, N. V. Dai-Viet, and J. R. Banu, “Techno-economic assessment of various hydrogen production methods — A review,” Bioresour. Technol. 319, 124175 (2021). https://doi.org/10.1016/j.biortech.2020.124175

    Article  CAS  Google Scholar 

  41. Y. Li and F. Taghizadeh-Hesary, “The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China,” Energy Policy 160, 112703 (2022). https://doi.org/10.1016/j.enpol.2021.112703

    Article  CAS  Google Scholar 

  42. S. E. Hosseini, “Hydrogen and fuel cells in transport road, rail, air and sea,” in Comprehensive Renewable Energy, Ed. by T. M. Letcher, 2nd ed. (Elsevier, San Diego, Calif., 2022), Vol. 4, pp. 317–342. https://doi.org/10.1016/B978-0-12-819727-1.00005-4

    Book  Google Scholar 

  43. C. Zhang, X. Cao, P. Bujlo, B. Chen, X. Zhang, X. Sheng, and C. Liang, “Review on the safety analysis and protection strategies of fast filling hydrogen storage system for fuel cell vehicle application,” J. Energy Storage 45, 103451 (2022).

    Article  Google Scholar 

  44. Y. Cao, H. A. Dhahad, A. G. ABo-Khalil, K. Sharma, A. H. Mohammed, A. E. Anqi, and A. S. El-Shafay, “Hydrogen production using solar energy and injection into a solid oxide fuel cell for CO2 emission reduction; Thermoeconomic assessment and tri-objective optimization,” Sustainable Energy Technol. Assess. 50, 101767 (2022). https://doi.org/10.1016/j.seta.2021.101767

    Article  Google Scholar 

  45. S. Seyam, I. Dincer, and M. Agelin-Chaab, “Analysis of a newly developed locomotive engine employing sustainable fuel blends with hydrogen,” Fuel 319, 123748 (2022). https://doi.org/10.1016/j.fuel.2022.123748

    Article  CAS  Google Scholar 

  46. J. Lu, Z. Fu, J. Liu, and W. Pan, “Influence of air distribution on combustion characteristics of a micro gas turbine fuelled by hydrogen-doped methane,” Energy Rep. 8 (Suppl. 2), 207–216 (2022). https://doi.org/10.1016/j.egyr.2021.11.027

    Article  Google Scholar 

  47. M. Ilbas, O. Kumuk, and S. Karyeyen, “Modelling of the gas-turbine colorless distributed combustion: An application to hydrogen enriched – kerosene fuel,” Int. J. Hydrogen Energy 47, 12354–12364 (2022). https://doi.org/10.1016/j.ijhydene.2021.06.228

    Article  CAS  Google Scholar 

  48. S. Benaissa, B. Adouane, S. M. Ali, S. S. Rashwan, and Z. Aouachria, “Investigation on combustion characteristics and emissions of biogas/hydrogen blends in gas turbine combustors,” Therm. Sci. Eng. Prog. 27, 101178 (2022). https://doi.org/10.1016/j.tsep.2021.101178

    Article  CAS  Google Scholar 

  49. O. F. Aalrebei, A. H. Al Assaf, A. Amhamed, N. Swaminathan, and S. Hewlett, “Ammonia-hydrogen-air gas turbine cycle and control analyses,” Int. J. Hydrogen Energy 47, 8603–8620 (2022). https://doi.org/10.1016/j.ijhydene.2021.12.190

    Article  CAS  Google Scholar 

  50. A. A. Mayyas, A. Chadly, S. T. Amer, and E. Azar, “Economics of the Li-ion batteries and reversible fuel cells as energy storage systems when coupled with dynamic electricity pricing schemes,” Energy 239, 121941 (2022). https://doi.org/10.1016/j.energy.2021.121941

    Article  Google Scholar 

  51. A. Chadly, E. Azar, M. Maalouf, W. Altawafshih, and A. Mayyas, “Techno-economic analysis of energy storage systems using reversible fuel cells and rechargeable batteries in green buildings,” Energy 247, 123466 (2022). https://doi.org/10.2139/ssrn.3972240

    Article  CAS  Google Scholar 

  52. S. Amicabile, M. Testi, and L. Crema, “Design and modeling of a hybrid reversible solid oxide fuel cell — Organic Rankine cycle,” Energy Procedia 129, 331–338 (2017). https://doi.org/10.1016/j.egypro.2017.09.202

    Article  CAS  Google Scholar 

  53. M. Lamagna, B. Nastasi, D. Groppi, C. Rozain, M. Manfren, and D. A. Garcia, “Techno-economic assessment of reversible solid oxide cell integration to renewable energy systems at building and district scale,” Energy Convers. Manage. 235, 113993 (2021). https://doi.org/10.1016/j.enconman.2021.113993

    Article  Google Scholar 

  54. A. N. Bairamov and S. A. Ermolaev, “Development of a methodology for estimating the depreciation costs of an installation with bifunctional electrochemical elements as part of a hydrogen complex when combined with a nuclear power plant,” in Modernization of Power Systems and Thermal Power Complexes: Proc. 14th Int. Sci. and Tech. Conf., Saratov, Russia, Oct. 30 – Nov. 2, 2018 (Sarat. Gos. Tekh. Univ., Saratov, 2018), pp. 60–68.

  55. R. Z. Aminov, A. F. Shkret, and M. V. Garievskii, “Thermal and nuclear power plants: Competitiveness in the new economic conditions,” Therm. Eng. 64, 319–328 (2017). https://doi.org/10.1134/S0040601517050019

    Article  CAS  Google Scholar 

  56. R. Z. Aminov, A. N. Bairamov, and M. V. Garievskii, “Assessment of the performance of a nuclear–hydrogen power generation system,” Therm. Eng. 66, 196–209 (2019). https://doi.org/10.1134/S0040601519030017

    Article  CAS  Google Scholar 

  57. R. Z. Aminov and M. V. Garievsky, “Evaluation of NPP efficiency using phase-transition batteries,” Therm. Eng. 70, 145–155 (2023). https://doi.org/10.1134/S0040601523020015

    Article  Google Scholar 

  58. R. Z. Aminov, A. N. Bairamov, and M. V. Garievskii, “Evaluation of system efficiency of a multifunctional hydrogen complex at thermal power plants,” Al’tern. Energ. Ekol., No. 13–15, 24–39 (2019).

Download references

Funding

The study was carried out with financial support from the Russian Science Foundation (grant no. 21-79-00174), https://rscf.ru/project/21-79-00174/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Z. Aminov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminov, R.Z., Egorov, A.N. & Bayramov, A.N. Assessing the Effectiveness of NPP Participation in Covering Peak Electrical Loads Based on Hydrogen Technology. Therm. Eng. 71, 125–141 (2024). https://doi.org/10.1134/S0040601524020010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601524020010

Keywords:

Navigation