Skip to main content
Log in

Study of the Influence of Climate Variability on the Operation of Wind Farms on the Territory of Russia

  • RENEWABLE ENERGY SOURCES
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

The work is devoted to studying the features of the wind-speed dynamics in the regions of Russia in which the existing and prospective wind-energy facilities are concentrated. For calculations, the latest generation reanalysis data set ERA5 for the period 1950–2021 was used. An analysis of wind-speed coherence on the cross-continental scales of Northern Eurasia has been carried out. It is shown that the characteristic size of the area of synchronous change in wind speed is hundreds of kilometers, while one can find locations with an incoherent variations of the wind speed in those territories of Russia where wind generation development is mainly concentrated. An empirical study of wind power plant (WPP) performance has been carried out on various time scales: from hourly to multidecade. It is shown that the typical variability of the average annual capacity factor (CF) of wind turbines is 10–20%. In this case, the extreme values of the CF in the entire considered period turn out to be two to three times higher. Averaging over the territory levels this value down to 10% in the case of typical values and up to 25–35% for extreme ones. A coefficient is proposed to estimate the daily unevenness of wind turbine power generation and the additional power reserve that will be required during the selected day in order to level the influence of wind turbine power fluctuations. It is shown that the wind turbine operation is characterized during the day by high variability, which, taking into account the specifics of power systems in a certain area, means an increase in the need for a reserve margin adjustment reserve. Averaging over the entire territory of each of the considered regions makes it possible to slightly increase the “guaranteed” generation of wind turbines and reduce its daily variability. At the same time, the choice of locations with minimal cross-correlations of the wind speed turns out to be almost as effective for reducing the daily nonuniformity as averaging over a large area. Tasks are identified, the solution of which will make it possible to simplify wind power integration into the power systems of Russian power system by minimizing risks for the reliability of power supply and optimizing the use of available opportunities to increase its flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. GWEC Global Wind Report 2022 (Global Wind Energy Council, Brussels, Belgium, 2022).

  2. Wholesale Energy Market Trade System Administrator Official Website. http://www.atsenergo.ru

  3. V. A. Butuzov, P. P. Bezrukikh, and V. V. Elistratov, “Development of renewable energy in Russia in the 20th–21st centuries,” Energ.: Ekon., Tekh., Ekol., No. 2, 54−63 (2022). https://doi.org/10.7868/S0233361922020070

  4. P. P. Bezrukikh, “Renewable energy in Russia: Development history and current state,” Vestn. MEI, No. 4, 11−18 (2022). https://doi.org/10.24160/1993-6982-2022-4-11-18

    Article  Google Scholar 

  5. V. V. Elistratov, E. M. Akent’eva, M. M. Borisenko, N. V. Kobysheva, G. I. Sidorenko, and V. V. Stadnik, The Climatic Factors of Renewable Energy Sources, Ed. by V. V. Elistratov, N. V. Kobysheva, and G. I. Sidorenko (Nauka, St. Petersburg, 2010) [in Russian].

    Google Scholar 

  6. B. Ermolenko, G. Ermolenko, Y. Fetisova, and L. Proskuryakova, “Wind and solar PV technical potentials: Measurement methodology and assessments for Russia,” Energy 137, 1001−1012 (2017). https://doi.org/10.1016/j.energy.2017.02.050

    Article  Google Scholar 

  7. V. V. Stadnik and V. V. Elistratov, “Renewable energy resources,” Tr. Gl. Geofiz. Obs. im. A. I. Voeikova, No. 574, 179−223 (2014).

    Google Scholar 

  8. V. Elistratov, L. Bogun, and V. Kasina, “Development of a geoinformation system for the design of wind power facilities in the Russian Arctic conditions,” IOP Conf. Ser.: Earth Environ. Sci. 302, 012064 (2019). https://doi.org/10.1088/1755-1315/302/1/012064

  9. T. S. Gabderakhmanova and O. S. Popel, “Competitiveness analysis results for photovoltaic microgeneration systems in the Russian Federation,” Dokl. Phys. 64, 245–248 (2019).

    Article  Google Scholar 

  10. A. R. Sibgatullin and V. V. Elistratov, “Optimization of equipment composition based on renewable energy sources in electric supply systems for low power autonomous consumers,” Al’tern. Energ. Ekol., No. 23−24, 51−67 (2016). https://doi.org/10.15518/isjaee.2016.23-24.051-067

  11. M. G. Tyagunov, “Optimization of the structure of distributed energy systems with renewable energy plants,” in Proc 4th Int. Congr. REENCON-XXI, Skolkovo, Russia, June 5–6, 2018 (Ob’edin. Inst. Vys. Temp. Ross. Akad. Nauk, Moscow, 2018), pp. 193−195.

  12. E. V. Ignat’ev, G. V. Deryugina, and M. G. Tyagunov, “Study of the possibility of carrying out compensatory regulation of offshore wind power plants,” Nov. Ross. Elektroenerg., No. 4, 49−58 (2019).

  13. J. Wohland, D. Brayshaw, and S. Pfenninger, “Mitigating a century of European renewable variability with transmission and informed siting,” Environ. Res. Lett. 16, 064026 (2021). https://doi.org/10.1088/1748-9326/abff89

    Article  Google Scholar 

  14. F. Veselov, T. Pankrushina, and A. Khorshev, “Comparative economic analysis of technological priorities for low-carbon transformation of electric power industry in Russia and the EU,” Energy Policy 156, 112409 (2021). https://doi.org/10.1016/j.enpol.2021.112409

    Article  Google Scholar 

  15. P. V. Ilyushin, O. V. Shepovalova, S. P. Filippov, and A. A. Nekrasov, “Calculating the sequence of stationary modes in power distribution networks of Russia for wide-scale integration of renewable energy based installations,” Energy Rep. 7, 308−327 (2021). https://doi.org/10.1016/j.egyr.2021.07.118

    Article  Google Scholar 

  16. H. Liu, T. Brown, G. Andresen, D. Schlachtberger, and M. Greiner, “The role of hydro power, storage and transmission in the decarbonization of the Chinese power system,” Appl. Energy 239, 1308−1321 (2019). https://doi.org/10.1016/j.apenergy.2019.02.009

    Article  Google Scholar 

  17. P. Coker, H. Bloomfield, D. Drew, and D. Brayshaw, “Interannual weather variability and the challenges for Great Britain’s electricity market design,” Renewable Energy 150, 509−522 (2020). https://doi.org/10.1016/j.renene.2019.12.082

    Article  Google Scholar 

  18. L. Duan, T. Ruggles, and K. Caldeira, “Electricity systems in the limit of free solar photovoltaics and continent-scale transmission,” iScience 25, 104−108 (2022). https://doi.org/10.1016/j.isci.2022.104108

  19. S. Pfenninger, L. Hirth, I. Schlecht, E. Schmid, F. Wiese, T. Brown, C. Davis, M. Gidden, H. Heinrichs, C. Heuberger, S. Hilpert, U. Krien, C. Matke, A. Nebel, R. Morrison, et al., “Opening the black box of energy modelling: Strategies and lessons learned,” Energy Strat. Rev. 19, 63−71 (2018). https://doi.org/10.1016/j.esr.2017.12.002

    Article  Google Scholar 

  20. R. Morrison, “Energy system modeling: Public transparency, scientific reproducibility, and open development,” Energy Strat. Rev. No. 20, 49−63 (2018). https://doi.org/10.1016/j.esr.2017.12.010

    Article  Google Scholar 

  21. T. Brown, J. Horsch, and D. Schlachtberger, “PyPSA: Python for power system,” J. Open Res. Software 6, 4 (2018). https://doi.org/10.5334/jors.188

    Article  Google Scholar 

  22. H. Bloomfield, D. Brayshaw, L. Shaffrey, P. Coker, and H. Thornton, “Quantifying the increasing sensitivity of power systems to climate variability,” Environ. Res. Lett. 11, 124025 (2016). https://doi.org/10.1088/1748-9326/11/12/124025

    Article  Google Scholar 

  23. A. Hilbers, D. Brayshaw, and A. Gandy, “Importance subsampling: Improving power system planning under climate-based uncertainty,” Appl. Energy 251, 113114 (2019). https://doi.org/10.1016/j.apenergy.2019.04.110

    Article  Google Scholar 

  24. R. Shaner, S. J. Davis, N. Lewis, and K. Caldeira, “Geophysical constraints on the reliability of solar and wind power in the United States,” Energy Environ. Sci. 11, 914−925 (2018). https://doi.org/resolver.caltech.edu/CaltechAUTHORS: 20180509-093355674

    Article  Google Scholar 

  25. K. Van Der Wiel, H. Bloomfield, R. Lee, L. Stoop, R. Blackport, J. Screen, and F. Selten, “The influence of weather regimes on European renewable energy production and demand,” Environ. Res. Lett. 14, 094010 (2019). https://doi.org/10.1088/1748-9326/ab38d3

    Article  Google Scholar 

  26. T. Ruggles and K. Caldeira, “Wind and solar generation may reduce the interannual variability of peak residual load in certain electricity systems,” Appl. Energy 305, 117773 (2022). https://doi.org/10.1016/j.apenergy.2021.117773

    Article  Google Scholar 

  27. M. Deakin, H. Bloomfield, D. Greenwood, S. Sheehy, S. Walker, and P. C. Taylor, “Impacts of heat decarbonization on system adequacy considering increased meteorological sensitivity,” Appl. Energy 298, 117261 (2021). https://doi.org/10.1016/j.apenergy.2021.117261

    Article  Google Scholar 

  28. D. J. Drew, P. J. Coker, H. C. Bloomfield, D. J. Brayshaw, J. F. Barlow, and A. Richards, “Sunny windy Sundays,” Renewable Energy 138, 870−875 (2019). https://doi.org/10.1016/j.renene.2019.02.029

    Article  Google Scholar 

  29. E. V. Kos’mina and N. I. Voropai, “Analysis of the reasons for the decrease in the flexibility of electric power systems and measures to increase it,” in Methodical Questions of Studying the Reliability of Large Energy Systems: Proc. 92nd Int. Sci. Seminar, Kazan, Russia, Sept. 21–26, 2020 (Inst. Sist. Energ. im L. A. Melent’eva Sib. Otd. Ross. Akad. Nauk, Irkutsk, 2020), No. 71, Vol. 1, pp. 407−417.

  30. D. S. Krupenev, G. F. Kovalev, D. A. Boyarkin, D. V. Yakubovskii, and L. M. Lebedeva, “Study of balance reliability and substantiation of generating capacity reserves of the prospective schemes of development of electric energy systems,” Energosnabzhenie, No. 6 (63), 40−44 (2020).

    Google Scholar 

  31. D. N. Karamov, I. M. Minarchenko, A. V. Kolosnitsyn, and N. V. Pavlov, “Installed capacity optimization of autonomous photovoltaic systems under energy service contracting,” Energy Convers. Manage. 240, 114256 (2021). https://doi.org/10.1016/j.enconman.2021.114256

    Article  Google Scholar 

  32. A. Kudelin and V. Kutcherov, “Wind energy in Russia: The current state and development trends,” Energy Strategy Rev. 34, 100627 (2021). https://doi.org/10.1016/j.esr.2021.100627

    Article  Google Scholar 

  33. F. Neumann and T. Brown, “The near-optimal feasible space of a renewable power system model,” Electr. Power Syst. Res. 190, 106690 (2021). https://doi.org/10.1016/j.epsr.2020.106690

    Article  Google Scholar 

  34. Q. Tian, G. Huang, K. Hu, and D. Niyogi, “Observed and global climate model based changes in wind power potential over the Northern Hemisphere during 1979−2016,” Energy 167, 1224−1235 (2019). https://doi.org/10.1016/j.energy.2018.11.027

    Article  Google Scholar 

  35. GOST R 58057-2018. Unified Power System and Isolated Power Systems. Planning of Power Systems Development. General Requirements (Standartinform, Moscow, 2018).

  36. F. L. Byk, P. V. Ilyushin, and L. S. Myshkina, “Features and prospects for the development of distributed energy industry in Russia,” Izv. Vyssh. Uchebn. Zaved., Elektromekh. 64 (6), 78−87 (2021).

    Google Scholar 

  37. D. Fioriti, L. Pellegrino, G. Lutzemberger, E. Micolano, and D. Poli, “Optimal sizing of residential batterysystems with multi-year dynamics and a novel rainflow-based model of storage degradation: An extensive Italian case study,” Electr. Power Syst. Res. 203, 107675 (2022). https://doi.org/10.1016/j.epsr.2021.107675

    Article  Google Scholar 

  38. S. V. Zharkov, V. A. Stennikov, I. V. Postnikov, and A. V. Pen’kovskii, “Technology of combined energy generation by thermal and wind power plants,” Energobezop. Energosberezhenie, No. 3, 8−14 (2017).

    Google Scholar 

  39. N. I. Voropay, D. N. Efimov, A. B. Osak, and M. V. Chulyukova, “Some generalizations of an analysis of 2016−2017 blackouts in the unified power system of Russia,” Energy Syst. Res. 3 (2), 5−12 (2020). https://doi.org/10.38028/esr.2020.02.0001

    Article  Google Scholar 

  40. A. V. Simonov and P. V. Ilyushin, “Methodology and algorithm for checking the setting parameters of the LVRT function of wind turbines of wind power plants during their integration into the unified power system of Russia,” Releinaya Zashch. Avtom., No. 1(46), 72−81 (2022).

  41. H. Miao, D. Dong, G. Huang, K. Hu, Q. Tian, and Y. Gong, “Evaluation of Northern Hemisphere surface wind speed and wind power density in multiple reanalysis datasets,” Energy 200, 117382 (2020). https://doi.org/10.1016/j.energy.2020.117382

    Article  Google Scholar 

  42. I. I. Mokhov, “Features of the formation of the summer heat of 2010 on the European territory of Russia in the context of general climate changes and its anomalies,” Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana 47, 709–716 (2011).

    Google Scholar 

  43. WEB-System for Remote Access to the YaOD-archives of the EGFD (WEB AISORI M) of the All-Russian Research Institute of Hydrometeorological Information — International Data Center. http://meteo.ru

  44. H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, et al., “The ERA5 global reanalysis,” Q. J. R. Meteorol. Soc. 146, 1999−2049 (2020). https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  45. N. I. Voropai and S. V. Podkoval’nikov, “From local electric power systems to a global energy interconnection: Concepts, technologies, issues,” in Large-Scale Systems Development Control (MSLD2019): Proc. 12th Int. Conf., Moscow, Oct. 1−3, 2019, Ed. by S. N. Vasil’ev and A. D. Tsvirkun (Inst. Probl. Upr. im. V. A. Trapeznikova Ross. Akad. Nauk, Moscow, 2019).

  46. D. Tong, D. Farnham, L. Duan, Q. Zhang, N. Lewis, K. Caldeira, and S. Davis, “Geophysical constraints on the reliability of solar and wind power worldwide,” Nat. Commun. 12, 6146 (2021). https://doi.org/10.1038/s41467-021-26355-z

    Article  Google Scholar 

  47. D. Hess, “The value of a dispatchable concentrating solar power transfer from Middle East and North Africa to Europe via point-to-point high voltage direct current lines,” Appl. Energy 221, 605–645 (2018). https://doi.org/10.1016/j.apenergy.2018.03.159

    Article  Google Scholar 

  48. S. Carreno-Madinabeitia, G. Ibarra-Berastegi, J. Saenz, and A. Ulazia, “Long-term changes in offshore wind power density and wind turbine capacity factor in the Iberian Peninsula (1900−2010),” Energy 226, 120364 (2021). https://doi.org/10.1016/j.energy.2021.120364

    Article  Google Scholar 

  49. K. Gruber, P. Regner, S. Wehrle, M. Zeyringer, and J. Schmidt, “Towards global validation of wind power simulations — A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas,” Energy 238, 121520 (2021). https://doi.org/10.1016/j.energy.2021.121520

    Article  Google Scholar 

  50. S. R. Thomas, S. Nicolau, O. Martinez-Alvarado, D. J. Drew, and H. C. Bloomfield, “How well do atmospheric reanalyses reproduce observed winds in coastal regions of Mexico?,” Meteorol. Appl. 28, E2023 (2021). https://doi.org/10.1002/met.2023

    Article  Google Scholar 

  51. B. Huai, J. Wang, W. Sun, Y. Wang, and W. Zhang, “Evaluation of the near-surface climate of the recent global atmospheric reanalysis for Qilian Mountains, Qinghai-Tibet Plateau,” Atmos. Res. 250, 105401 (2021). https://doi.org/10.1016/j.atmosres.2020.105401

    Article  Google Scholar 

  52. Geo-Information System “Renewable Energy Sources of Russia”: A Project. https://gisre.ru.

  53. N. Bokde, A. Feijoo, and D. Villanueva, “Wind turbine power curves based on the Weibull cumulative distribution function,” Appl. Sci. 8, 1757 (2018). https://doi.org/10.3390/app8101757

    Article  Google Scholar 

  54. J. Wohland, D. Folini, and B. Pickering, “Wind speed stilling and its recovery due to internal climate variability 2021 on wind variability,” Earth Syst. Dyn. 12, 1239–1251 (2021). https://doi.org/10.5194/esd-2021-29

    Article  Google Scholar 

  55. V. V. Klimenko and E. V. Fedotova, “Long-term development prospects of Russia’s wind energy in the conditions of expected climate changes,” Therm. Eng. 67, 331–342 (2020). https://doi.org/10.1134/S0040601520060051

    Article  Google Scholar 

  56. I. Staffell and S. Pfenninger, “Using bias-corrected reanalysis to simulate current and future wind power output,” Energy 114, 1224−1239 (2016). https://doi.org/10.1016/j.energy.2016.08.068

    Article  Google Scholar 

  57. P. V. Ilyushin, “Development of technical requirements for distributed energy sources generating plants in the conditions of transformation of electric power system,” in Methodical Questions of Studying the Reliability of Large Energy Systems: Proc. 92nd Int. Sci. Seminar, Kazan, Russia, Sept. 21–26, 2020 (Inst. Sist. Energ. im L. A. Melent’eva Sib. Otd. Ross. Akad. Nauk, Irkutsk, 2020), No. 71, Vol. 1, pp. 29−38.

  58. O. N. Favorskii, V. M. Batenin, and S. P. Filippov, “Energy development: Selection of strategic decisions and their implementation,” Vestn. Ross. Akad. Nauk 90, 415–424 (2020).

    Google Scholar 

  59. V. V. Klimenko, O. E. Kondrat'eva, A. G. Tereshin, E. V. Fedotova, O. A. Loktionov, and E. M. Voronkova, “Change in the wind conditions on the territory of Russia and failure rate of overhead power lines,” Doklady Ross. Akad. Nauk., Fizika, Tekhn. Nauki 497 (1), 57–64 (2021). https://doi.org/10.31857/S2686740021020048

  60. STO 59012820.27.010.001-2018. Active Power Margin of the Unified Power System of Russia. Determination of the Volume of Active Power Margin during Short-Term Planning (Sist. Oper. Edin. Energ. Sist., Moscow, 2018).

Download references

Funding

This work has been supported by the Russian Science Foundation by the project No. 18-79-10255 (E.V. Fedotova, Yu. A.Kozlova) in part of energy modeling and 20-19-00721 (V.V. Klimenko) in part of climate calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Fedotova.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotova, E.V., Klimenko, V.V. & Kozlova, Y.A. Study of the Influence of Climate Variability on the Operation of Wind Farms on the Territory of Russia. Therm. Eng. 70, 397–417 (2023). https://doi.org/10.1134/S0040601523060046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601523060046

Keywords:

Navigation