Skip to main content
Log in

Simulation of Condensation of Stagnant or Moving Saturated Vapor on a Horizontal Tube Using the Volume-of-Fluid (VOF) Method

  • HEAT AND MASS TRANSFER, PROPERTIES OF WORKING BODIES AND MATERIALS
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

The processes of film condensation of stagnant and moving vapor on a single tube and various tube bundles were examined in many studies. Nevertheless, the local characteristics of heat transfer and the details of the interaction of the flowing down condensate with a moving vapor flow, which can have a significant effect on the characteristics of the condensation process in tube bundles, are not well understood. The paper presents the results of simulation of the condensation of practically stagnant and of moving saturated vapor on a horizontal cylinder. The mathematical model of a two-phase flow is based on the Volume of Fluid (VOF) method, which is implemented in the in-house CFD-code ANES. The main advantage of the proposed simulation method is that it can capture the interface without any assumptions. The modified Lee model was used to model interfacial mass transfer. An algorithm is proposed for the automatic selection of a constant in this model on the basis of the specified properties of the coolant and parameters of the computational grid. The model was validated against the classical Nusselt solutions for a vertical plate and a horizontal cylinder, known calculating correlations, and predictions obtained using a simplified condensation model proposed by the authors of this paper in previous studies. Information is presented on the drip-off diameters of droplets, the dynamics of heating of subcooled condensate droplets after their drip-off from the tube surface, and the effect of external tube spraying on the condensation rate. The obtained data are compared with the available experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.

Similar content being viewed by others

REFERENCES

  1. I. I. Gogonin, A Study of Heat Transfer in Film Vapor Condensation (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2015) [in Russian].

    Google Scholar 

  2. V. A. Fedorov and O. O. Mil’man, Condensers of Steam Turbine Plants (Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Moscow, 2013) [in Russian].

  3. C. Bonneau, C. Josset, V. Melot, and B. Auvity, “Comprehensive review of pure vapour condensation outside of horizontal smooth tubes,” Nucl. Eng. Des. 349, 92–108 (2019). https://doi.org/10.1016/j.nucengdes.2019.04.005

    Article  Google Scholar 

  4. C. Grant, An Experimental Investigation of Drop Wise and Film Wise Condensation of Low Pressure Steam in Tube Banks, PhD Thesis (Heriot-Watt Univ., Edinburgh, 1999).

  5. Y. Y. Tsui and S. W. Lin, “A VOF-based conservative interpolation scheme for interface tracking (CISIT) of two-fluid flows,” Numer. Heat Transfer, Part B: Fundam. 63, 263–283 (2013). https://doi.org/10.1080/10407790.2013.756251

    Article  Google Scholar 

  6. C. R. Kharangate and I. Mudawar, “Review of computational studies on boiling and condensation,” Int. J. Heat Mass Transfer 108, 1164–1196 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.065

    Article  Google Scholar 

  7. M. Knudsen, The Kinetic Theory of Gases: Some Modern Aspects (Methuen’s Monographs Physical Subjects) (Methuen and Co., London, 1934).

    Google Scholar 

  8. V. V. Yagov, Heat Transfer in Single-Phase Media and in Phase Transformations (Mosk. Energ. Inst., Moscow, 2014) [in Russian].

    Google Scholar 

  9. W. H. Lee, “A pressure iteration scheme for two-phase flow modeling,” in Multiphase Transport: Fundamentals, Reactor Safety, Applications, Ed. by T. N. Veziroglu (Hemisphere, Washington, DC, 1980), pp. 407–432.

  10. C. Aghanajafi and K. Hesampour, “Heat transfer analysis of a condensate flow by VOF method,” J. Fusion Energy 25, 219–223 (2006). https://doi.org/10.1007/s10894-006-9025-6

    Article  Google Scholar 

  11. T. Kleiner, S. Rehfeldt, and H. Klein, “CFD model and simulation of pure substance condensation on horizontal tubes using the volume of fluid method,” Int. J. Heat Mass Transfer 138, 420–431 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.054

    Article  Google Scholar 

  12. T. Kleiner, A. Eder, S. Rehfeldt, and H. Klein, “Detailed CFD simulations of pure substance condensation on horizontal annular low finned tubes including a parameter study of the fin slope,” Int. J. Heat Mass Transfer 163, 120363 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120363

    Article  Google Scholar 

  13. S. Li and Y. Ju, “Numerical study on the condensation characteristics of various refrigerants outside a horizontal plain tube at low temperatures,” Int. J. Therm. Sci. 176, 107508 (2022). https://doi.org/10.1016/j.ijthermalsci.2022.107508

    Article  Google Scholar 

  14. ANSYS Fluent Theory Guide (ANSYS, Canonsburg, 2018).

  15. W.-T. Ji, G.-H. Chong, C.-Y. Zhao, H. Zhang, and W.‑Q. Tao, “Condensation heat transfer of R134a, R1234ze(E) and R290 on horizontal plain and enhanced titanium tubes,” Int. J. Refrig. 93, 259–268 (2018). https://doi.org/10.1016/j.ijrefrig.2018.06.013

    Article  Google Scholar 

  16. C. W. Hirt and B. Nichols, “Volume of fluid (VOF) method for dynamics of free boundaries,” J. Comput. Phys. 39, 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5

    Article  MATH  Google Scholar 

  17. O. Ubbink and R. I. Issa, “A method for capturing sharp fluid interfaces on arbitrary meshes,” J. Comput. Phys. 153, 26–50 (1999). https://doi.org/10.1006/jcph.1999.6276

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Zhang, A. Faghri, and M. B. Shafii, “Capillary blocking in forced convective condensation in horizontal miniature channels,” J. Heat Transfer 123, 501–511 (2001). https://doi.org/10.1115/1.1351808

    Article  Google Scholar 

  19. S. Hardt and F. Wondra, “Evaporation model for interfacial flows based on a continuum-field representation of the source terms,” J. Comput. Phys. 227, 5871–5895 (2008). https://doi.org/10.1016/j.jcp.2008.02.020

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Kunkelmann, Numerical Modeling and Investigation of Boiling Phenomena, PhD Thesis (Technische Univ. Darmstadt, Darmstadt, Germany, 2011).

  21. A. S. Rattner and S. Garimella, “Simple mechanistically consistent formulation for volume-of-fluid based computations of condensing flows,” J. Heat Transfer 136, 071501 (2014). https://doi.org/10.1115/1.4026808

    Article  Google Scholar 

  22. ANES Code. http://anes.ch12655.tmweb.ru/

  23. S. V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, New York, 1980; Energoatomizdat, Moscow, 1984).

  24. R. I. Issa, “Solution of the implicitly discretised fluid flow equations by operator-splitting,” J. Comput. Phys. 62, 40–65 (1986). https://doi.org/10.1016/0021-9991(86)90099-9

    Article  MathSciNet  MATH  Google Scholar 

  25. I. H. Bell, J. Wronski, S. Quoilin, and V. Lemort, “Pure and pseudo-pure fluid thermophysical property evaluation and the opensource thermophysical property library CoolProp,” Ind. Eng. Chem. Res. 53, 2498–2508 (2014). https://doi.org/10.1021/ie4033999

    Article  Google Scholar 

  26. D. Yung, J. J. Lorenz, and E. N. Ganic, “Vapor/liquid interaction and entrainment in falling film evaporators,” J. Heat Transfer 102, 20–25 (1980). https://doi.org/10.1115/1.3244242

    Article  Google Scholar 

  27. S. S. Kutateladze, I. I. Gogonin, and V. I. Sosunov, “The influence of condensate flow rate on heat transfer in film condensation of stationary vapour on horizontal tube banks,” Int. J. Heat Mass Transfer 28, 1011–1018 (1985). https://doi.org/10.1016/0017-9310(85)90283-2

    Article  Google Scholar 

  28. F. Tetsu, U. Haruo, and K. Chikatoshi, “Laminar filmwise condensation of flowing vapour on a horizontal cylinder,” Int. J. Heat Mass Transfer 15, 235–246 (1972). https://doi.org/10.1016/0017-9310(72)90071-3

    Article  Google Scholar 

  29. J. W. Rose, “Effect of pressure gradient in forced convection film condensation on a horizontal tube,” Int. J. Heat Mass Transfer 27, 39–47 (1984). https://doi.org/10.1016/0017-9310(84)90235-7

    Article  Google Scholar 

  30. K. B. Minko, V. I. Artemov, and A. A. Klement’ev, “Validation of the model of a liquid condensate film on a flat horizontal cylinder surface at different steam flow directions,” Therm. Eng. 69 (12) (2022) (in press). https://doi.org/10.56304/S0040363622120062

  31. M. Jakob, Heat Transfer (Wiley, New York, 1949).

    Google Scholar 

  32. D. Q. Kern, Process Heat Transfer (McGraw-Hill, New York, 1950).

    Google Scholar 

  33. S. N. Fuks, “Heat emission during moving vapor condensation in a horizontal tube bundle,” Teploenergetika, No. 1, 35–38 (1957).

    Google Scholar 

  34. J. L. Wilson, “The design of condensers by digital computers,” Chem. Eng. Symp. Ser. 35, 21–27 (1972).

    Google Scholar 

  35. I. D. R. Grant and B. D. J. Osment, The Effect of Condensate Drainage on Condenser Performance, Technical Report No. 350 (National Engineering Laboratory, East Kilbride, Glasgow, 1968).

Download references

ACKNOWLEDGMENTS

We are grateful to Prof., Dr. Tech. Sciences, G.G. Yan’kov for discussion of the work results and valuable comments.

Funding

The work was funded by the Russian Science Foundation (grant no. 22-29-01457, https://rscf.ru/project/22-29-01457/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Minko.

Additional information

Translated by T. Krasnoshchekova

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minko, K.B., Artemov, V.I. & Klement’ev, A.A. Simulation of Condensation of Stagnant or Moving Saturated Vapor on a Horizontal Tube Using the Volume-of-Fluid (VOF) Method. Therm. Eng. 70, 175–193 (2023). https://doi.org/10.1134/S0040601523030059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601523030059

Keywords:

Navigation