Skip to main content
Log in

Modern Methods for Numerical Simulation of Radiation Heat Transfer in Selective Gases (Review)

  • HEAT AND MASS TRANSFER AND PROPERTIES OF WORKING FLUIDS AND MATERIALS
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

Radiative heat transfer in a gaseous medium of furnaces and ovens is the most important heat-transfer process controlling the efficiency of industrial installations. This explains the great interest of thermal engineers in modern methods of numerical simulation of radiative heat transfer. Heat transfer in high-temperature gases is mathematically described by the differential equation of radiative heat transfer together with the transport equations of thermal convection. The main problem is that triatomic gases, such as water vapor and carbon dioxide, selectively emit and absorb radiation energy, as a result of which their absorption coefficients become variable in spatial coordinates. The advances of recent decades in infrared spectroscopy have brought about favorable conditions for the development of well-substantiated models suitable for the calculation of absorption coefficients of the most important triatomic gases. The polylinear calculation of radiative transfer in a million spectral lines gave way to a narrow band model with a correlated absorption coefficient and then to global full spectrum models. Along with models of the absorption coefficient, methods for the numerical solution of the differential equation of radiative transfer are being improved. As a result, more than a dozen different models and methods can be used at present to calculate radiative heat transfer in industrial units. The proposed review partially eliminates the lack of publications that compare different approaches to the numerical study of radiation problems. It traces, up to up to the present time, more than 20 years of successive development of mathematical models of radiative heat transfer in selective gases. The main methods for the iterative solution of the differential equation of radiative heat transfer are also included in the review. At the same time, to eliminate complication of the model analysis, the review does not include excess information on boundary conditions and beam scattering. To ensure the unambiguity of the concepts used, the review is preceded by a short theoretical note.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. H. C. Hottel and A. F. Sarofim, Radiative Transfer (McGraw-Hill, New York, 1967).

    Google Scholar 

  2. M. N. Özişik, Radiative Transfer and Interactions with Conduction and Convection (Wiley, New York, 1973; Mir, Moscow, 1976).

  3. R. Viskanta and M. P. Mengüç, “Radiation heat transfer in combustion systems,” Prog. Energy Combust. Sci. 13, 97–160 (1987). https://doi.org/10.1016/0360-1285(87)90008-6

    Article  Google Scholar 

  4. M. F. Modest, “The treatment of nongray properties in radiative heat transfer: From past to present,” J. Heat Transfer 135, 061801 (2013). https://doi.org/10.1115/1.4023596

    Article  Google Scholar 

  5. L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010). https://doi.org/10.1016/j.jqsrt.2010.05.001

    Article  Google Scholar 

  6. F. Liu, “Numerical solutions of three-dimensional non-grey gas radiative transfer using the statistical narrow-band model,” J. Heat Transfer 121, 200–203 (1999). https://doi.org/10.1115/1.2825944

    Article  Google Scholar 

  7. P. Riviére and A. Soufiani, “Updated band model parameters for H2O, CO2, CH4 and CO radiation at high temperature,” Int. J. Heat Mass Transfer 55, 3349–3358 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.019

    Article  Google Scholar 

  8. F. Liu and G. J. Smallwood, “An efficient approach for the implementation of the SNB based correlated-k method and its evaluation,” J. Quant. Spectrosc. Radiat. Transfer 84, 465–475 (2004). https://doi.org/10.1016/S0022-4073(03)00263-2

    Article  Google Scholar 

  9. H. Chu, F. Liu, and H. Zhou, “Calculations of gas radiation heat transfer in a two-dimensional rectangular enclosure using the line-by-line approach and the statistical narrow-band correlated-k model,” Int. J. Therm. Sci. 59, 66–74 (2012). https://doi.org/10.1016/j.ijthermalsci.2012.04.003

    Article  Google Scholar 

  10. M. K. Denison and B. W. Webb, “A spectral line-based weighted-sum-of-gray-gases model for arbitrary RTE solvers,” Int. J. Heat Mass Transfer 115, 1004–1012 (1993). https://doi.org/10.1115/1.2911354

    Article  Google Scholar 

  11. L. Pierrot, P. Rivière, A. Soufiani, and J. Taine, “A fictitious-gas-based absorption distribution function global model for radiative transferring hot gases,” J. Quant. Spectrosc. Radiat. Transfer 62, 609–624 (1999). https://doi.org/10.1016/S0022-4073(98)00124-1

    Article  Google Scholar 

  12. V. P. Solovjov and B. W. Webb, “The cumulative wavenumber method for modeling radiative transfer in gas mixtures with soot,” J. Quant. Spectrosc. Radiat. Transfer 93, 273–287 (2005). https://doi.org/10.1016/j.jqsrt.2004.08.037

    Article  Google Scholar 

  13. C. Wang, M. F. Modest, and B. He, “Improvement of full-spectrum k-distribution method using quadrature transformation,” Int. J. Therm. Sci. 108, 100–107 (2016). https://doi.org/10.1016/j.ijthermalsci.2016.05.005

    Article  Google Scholar 

  14. V. Kez, J. L. Consalvi, F. Liu, J. Strӧhle, and B. Epple, “Assessment of several gas radiation models for radiative heat transfer calculations in a three-dimensional oxy-fuel furnace under coal-fired conditions,” Int. J. Therm. Sci. 120, 289–302 (2017). https://doi.org/10.1016/j.ijthermalsci.2017.06.017

    Article  Google Scholar 

  15. F. Liu, J.-L. Consalvi, P. J. Coelho, F. André, M. Gu, V. P. Solovjov, and B. W. Webb, “The impact of radiative heat transfer in combustion processes and its modeling — With a focus on turbulent flames,” Fuel 281, 118555 (2020). https://doi.org/10.1016/j.fuel.2020.118555

    Article  Google Scholar 

  16. S. Zheng, R. Sui, Y. Yang, Y. Sun, H. Zhou, and Q. Lu, “An improved full-spectrum correlated-k-distribution model for non-gray radiative heat transfer in combustion gas mixtures,” Int. Commun. Heat Mass Transfer 114, 104566 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104566

    Article  Google Scholar 

  17. C. Wang, W. Ge, M. Modest, and B. He, “A full-spectrum k-distribution look-up table for radiative transfer in nonhomogeneous gaseous media,” J. Quant. Spectrosc. Radiat. Transfer 168, 46–56 (2016). https://doi.org/10.1016/j.jqsrt.2015.08.017

    Article  Google Scholar 

  18. L. J. Dorigon, G. Duciak, R. Brittes, F. Cassol, M. Galarҫa, and F. H. R. Franҫa, “WSGG correlations based on HITEMP2010 for computation of thermal radiation in non-isothermal, non-homogeneous H2O/CO2 mixtures,” Int. J. Heat Mass Transfer 64, 863–873 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.010

    Article  Google Scholar 

  19. F. Cassol, R. Brittes, F. H. R. França, and O. A. Ezekoye, “Application of the weighted-sum-of-gray-gases model for media composed of arbitrary concentrations of H2O, CO2 and soot,” Int. J. Heat Mass Transfer 79, 796–806 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.032

    Article  Google Scholar 

  20. F. R. Centeno, R. Brittes, F. H. R. França, and O. A. Ezekoye, “Evaluation of gas radiation heat transfer in a 2D axisymmetric geometry using the line-by-line integration and WSGG models,” J. Quant. Spectrosc. Radiat. Transfer 156, 1–11 (2015). https://doi.org/10.1016/j.jqsrt.2015.01.015

    Article  Google Scholar 

  21. V. A. Kuznetsov, “Mathematical model of the radiative heat exchange in the selective gases of a diffusion flame,” J. Eng. Phys. Thermophys. 90, 357–365 (2017). https://doi.org/10.1007/s10891-017-1575-0

    Article  Google Scholar 

  22. A. V. Trulev and V. A. Kuznetsov, “A method for calculating the absorption properties of triatomic gases,” Therm. Eng. 60, 434–437 (2013). https://doi.org/10.1134/S0040601513060104

    Article  Google Scholar 

  23. X. Yang, A. Clements, J. Szuhánszki, X. Huang, O. F. Moguel, J. Li, J. Gibbins, Zh. Liu, Ch. Zheng, D. Ingham, L. Ma, B. Nimmo, and M. Pourkashanian, “Prediction of the radiative heat transfer in small and large scale oxy-coal furnaces,” Appl. Energy 211, 523–537 (2018). https://doi.org/10.1016/j.apenergy.2017.11.070

    Article  Google Scholar 

  24. I. Sikic, S. Dembele, and J. Wen, “Non-gray radiative heat transfer modelling in LESCFD simulated methanol pool fires,” J. Quant. Spectrosc. Radiat. Transfer 234, 78–89 (2019). https://doi.org/10.1016/j.jqsrt.2019.06.004

    Article  Google Scholar 

  25. Ch. Paul, S. F. Fernandez, D. C. Haworth, S. Roy, and M. F. Modest, “A detailed modeling study of radiative heat transfer in a heavy-duty diesel engine,” Combust. Flame 200, 325–341 (2019). https://doi.org/10.1016/j.combustflame.2018.11.032

    Article  Google Scholar 

  26. P. H. de Almeida Konzen, L. F. Guidi, and Th. Richter, “Quasi-random discrete ordinates method for neutron transport problems,” Ann. Nucl. Energy 133, 275–282 (2019). https://doi.org/10.1016/j.anucene.2019.05.017

    Article  Google Scholar 

  27. C. Cintolesi, H. Nilsson, A. Petronio, and V. Armenio, “Numerical simulation of conjugate heat transfer and surface radiative heat transfer using the P1 thermal radiation model: Parametric study in benchmark cases,” Int. J. Heat Mass Transfer 107, 956–971 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.006

    Article  Google Scholar 

  28. A. Yu. Chebotarev, G. V. Grenkin, A. E. Kovtanyuk, N. D. Botkin, and K.-H. Hoffmann, “Diffusion approximation of the radiative-conductive heat transfer model with Fresnel matching conditions,” Commun. Nonlinear Sci. Numer. Simul. 57, 290–298 (2018). https://doi.org/10.1016/j.cnsns.2017.10.004

    Article  MathSciNet  MATH  Google Scholar 

  29. A. A. A. Gamil, T. Nikolaidis, I. Lelaj, and P. Laskaridis, “Assessment of numerical radiation models on the heat transfer of an aero-engine combustion chamber,” Case Stud. Therm. Eng. 22, 100772 (2020). https://doi.org/10.1016/j.csite.2020.100772

    Article  Google Scholar 

  30. L. Palluotto, N. Dumont, P. Rodrigues, O. Gicquel, and R. Vicquelin, “Assessment of randomized Quasi-Monte Carlo method efficiency in radiative heat transfer simulations,” J. Quant. Spectrosc. Radiat. Transfer 236, 106570 (2019). https://doi.org/10.1016/j.jqsrt.2019.07.013

    Article  Google Scholar 

  31. X. Zhang, Q. Ai, K. Song, and H. Tan, “Bidirectional Monte Carlo method for thermal radiation transfer in participating medium,” AIMS Energy 9, 603–622 (2021). https://doi.org/10.3934/energy.2021029

    Article  Google Scholar 

  32. Zh. Shu, Q. Chaobo, H. Zhifeng, and Zh. Huaichun, “Non-gray radiation study of gas and soot mixtures in one-dimensional planar layer by DRESOR,” J. Quant. Spectrosc. Radiat. Transfer 217, 425–431 (2018). https://doi.org/10.1016/j.jqsrt.2018.06.020

    Article  Google Scholar 

  33. Y. Yang, S. Zheng, and Q. Lu, “Numerical solutions of non-gray gases and particles radiative transfer in three-dimensional combustion system using DRESOR and SNBCK,” Int. J. Therm. Sci. 161, 106783 (2021). https://doi.org/10.1016/j.ijthermalsci.2020.106783

    Article  Google Scholar 

  34. H. Ebrahimi, A. Zamaniyan, J. S. S. Mohammadzadeh, and A. A. Khalili, “Zonal modeling of radiative heat transfer in industrial furnaces using simplified model for exchange area calculation,” Appl. Math. Modell. 37, 8004–8015 (2013). https://doi.org/10.1016/j.apm.2013.02.053

    Article  MathSciNet  MATH  Google Scholar 

  35. V. Feldheim and P. Lybaert, “Solution of radiative heat transfer problems with the discrete transfer method applied to triangular meshes,” J. Comput. Appl. Math. 168, 179–190 (2004). https://doi.org/10.1016/j.cam.2003.05.016

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kuznetsov.

Additional information

Translated T. Krasnoshchekova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.A. Modern Methods for Numerical Simulation of Radiation Heat Transfer in Selective Gases (Review). Therm. Eng. 69, 702–710 (2022). https://doi.org/10.1134/S0040601522080043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601522080043

Keywords:

Navigation