Skip to main content
Log in

Boiling in Forced Convection of Subcooled Liquid as a Method for Removing High Heat Fluxes (Review): Part 2. Critical Heat Fluxes and Heat-Transfer Enhancement

  • HEAT AND MASS TRANSFER AND PROPERTIES OF WORKING FLUIDS AND MATERIALS
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

The article is the second part of the review devoted to the boiling of a liquid subcooled to the saturation temperature, the process which enables the removal of heat fluxes of extremely high density1 The first part presents the specific features of the process mechanism, together with its phenomenological model, and analyzes data on heat transfer and hydraulic resistance. This article is devoted to the heat-transfer crisis during subcooled boiling and the issues of heat-transfer enhancement. The heat-transfer crisis has been demonstrated to be caused by a sharp change in the flow structure involving the corresponding transformation of the heat-transfer mechanism, when the ensemble of individual bubbles is replaced with the regime of coalesced bubbles and vapor agglomerates, thereby causing the conditions facilitating the rupture of near-wall liquid films and the formation of dry spots increasing in size. The simplest and sufficiently effective relationship for calculating the critical heat flux (qcr) at high subcooling values is the modified empirical formula proposed by Tong. It has been concluded that it would be impractical to describe qcr by a single formula in the entire range of studied subcoolings. Several processes for modifying the heating surface to enhance heat transfer and increase qcr are briefly examined. Engineering problems arising in implementing these processes are discussed. The advisability of continuing comprehensive studies into the subcooled liquid boiling, primarily for understanding the physical features of the phenomenon, has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. N.V. Vasil’ev, Yu.A. Zeigarnik, and K.A. Khodakov, Boiling in Forced Convection of Subcooled Liquid as a Method for Removing High Heat Fluxes (Review): Part 1. Characteristics, Mechanism and Model of the Process, Heat Transfer, and Hydraulic Resistance, Thermal Engineering, 69, 235–251 (2022).

REFERENCES

  1. Yu. A. Zeigarnik, “On the universal burnout model of subcooled liquid in channels,” Teplofiz. Vys. Temp. 34, 52–56 (1996).

    Google Scholar 

  2. F. C. Gunther, “Photographic study of surface boiling heat transfer to water with forced convection,” J. Heat Transfer 73, 115–123 (1951).

    Google Scholar 

  3. S. Mirshak, W. S. Durant, and R. H. Towell, Heat Flux at Burnout, E. l. du Pont de Nemours and Company Report No. 355 (1959).

  4. A. P. Ornatskii and A. M. Kichigin, “Investigation of the dependence of the critical thermal load on the weight velocity, subcooling and pressure,” Teploenergetika, No. 2, 75–79 (1961).

    Google Scholar 

  5. A. P. Ornatskii and L. S. Vinyarskii, “Heat transfer crisis in conditions of forced movement of subcooled water in small-diameter tubes,” Teplofiz. Vys. Temp. 3, 444–451 (1965).

    Google Scholar 

  6. V. N. Smolin and V. K. Polyakov, “Critical heat flux in the longitudinal flow in a bundle of rods,” Teploenergetika, No. 4, 54–58 (1967).

    Google Scholar 

  7. “Look-up tables data for calculating the heat transfer crisis in water boiling in uniformly heated round tubes,” Teploenergetika, No. 9, 90–92 (1976).

  8. Yu. A. Zeigarnik, N. P. Privalov, and A. I. Klimov, “Critical heat fluxes during boiling of subcooled water in rectangular channels with one-sided heat supply,” Teploenergetika, No. 1, 48–51 (1981).

    Google Scholar 

  9. R. D. Boyd, “Subcooled water flow boiling experiments under uniform high heat flux conditions,” Fusion Sci. Technol. 13, 131–142 (1988). https://doi.org/10.13182/FST88-A25090

    Article  Google Scholar 

  10. R. D. Boyd, “Subcooled water flow boiling transition and the L/D effect on CHF for a horizontal uniformly heated tube,” Fusion Sci. Technol. 18, 317–324 (1990). https://doi.org/10.13182/FST90-A29303

    Article  Google Scholar 

  11. G. P. Celata, M. Cumo, and A. Mariani, “Burnout in highly subcooled water flow boiling in small diameter tubes,” Int. J. Heat Mass Transfer 36, 1269–1285 (1993). https://doi.org/10.1016/S0017-9310(05)80096-1

    Article  Google Scholar 

  12. C. L. Vandervort, A. E. Bergles, and M. K. Jensen, “An experimental study of critical heat flux in very high heat flux subcooled boiling,” Int. J. Heat Mass Transfer 37, 161–173 (1994). https://doi.org/10.1016/0017-9310(94)90019-1

    Article  Google Scholar 

  13. G. P. Celata, M. Cumo, and A. Mariani, “Geometrical effects on the subcooled flow boiling critical heat flux,” Rev. Gen. Therm. 36, 807–814 (1997).

    Article  Google Scholar 

  14. Yu. A. Zeigarnik, A. I. Klimov, A. G. Rotinov, and B. A. Smyslov, “Some experimental results on burnout in subcooled water flow boiling,” Therm. Eng. 44, 184–191 (1997).

    Google Scholar 

  15. G. P. Celata, M. Cumo, A. Mariani, and G. Zummo, “Physical insight in the burnout region of water-subcooled flow boiling,” Rev. Gen. Therm. 37, 450–458 (1998).

    Article  Google Scholar 

  16. I. Mudawar and M. B. Bowers, “Ultra-high critical heat flux (CHF) for subcooled water flow boiling — I: CHF data and parametric effects for small diameter tubes,” Int. J. Heat Mass Transfer 42, 1405–1428 (1999). https://doi.org/10.1016/S0017-9310(98)00241-5

    Article  Google Scholar 

  17. G. P. Celata, M. Cumo, A. Mariani, and G. Zummo, “Burnout in subcooled flow boiling of water. A visual experimental study,” Int. J. Therm. Sci. 39, 896–908 (2000). https://doi.org/10.1016/S1290-0729(00)01175-3

    Article  Google Scholar 

  18. I. C. Bang, S. H. Chang, and W. P. Baek, “Visualization of the subcooled flow boiling of R-134a in a vertical rectangular channel with an electrically heated wall,” Int. J. Heat Mass Transfer 47, 4349–4363 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2004.04.030

    Article  Google Scholar 

  19. G. Bloch, W. Muselmann, M. Saier, and T. Sattelmayer, “A phenomenological study on effects leading to the departure from nucleate boiling in subcooled flow boiling,” Int. J. Heat Mass Transfer 67, 61–69 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.014

    Article  Google Scholar 

  20. N. V. Vasil’ev, Yu. A. Zeigarnik, K. A. Khodakov, and I. V. Maslakova, “Experimental investigation of two-phase subcooled liquid flow structure under preburnout conditions,” Therm. Eng. 66, 798–803 (2019). https://doi.org/10.1134/S0040601519110077

    Article  Google Scholar 

  21. N. V. Vasil’ev, Yu. A. Zeigarnik, K. A. Khodakov, and S. N. Vavilov, “Vapor agglomerates and dry spots as precursors of the subcooled liquid boiling crisi in a channel,” High Temp. 59, 373–383 (2021).

    Article  Google Scholar 

  22. N. V. Vasiliev, Yu. A. Zeigarnik, and K. A. Khodakov, “Evolution of steam–water flow structure under subcooled water boiling at smooth and structured heating surfaces,” J. Phys.: Conf. Ser. 891, 012008 (2017). https://doi.org/10.1088/1742-6596/891/1/012008

    Article  Google Scholar 

  23. Yu. A. Zeigarnik, N. V. Vasil’ev, E. A. Druzhinin, I. V. Kalmykov, A. S. Kosoi, and K. A. Khodakov, “Prospects for boiling of subcooled dielectric liquids for supercomputer cooling,” Dokl. Phys. 63, 58–60 (2018).

    Article  Google Scholar 

  24. Y. Li, K. Fukuda, and Q. Liu, “Subcooled boiling FC-72 in vertical low diameter tubes,” in Proc. 16th Int. Heat Transfer Conf., Beijing, China, Aug. 10–15, 2018, pp. 6755–6760, paper id. IHTC16-23064. https://doi.org/10.1615/IHTC16.mpf.023064

  25. D. D. Hall and I. Mudawar, “Ultra-high critical heat flux (CHF) for subcooled water flow boiling in tubes — II. CHF data base and design equations,” Int. J. Heat and Mass Transfer 42, 1429–1456 (1999). https://doi.org/10.1016/S0017-9310(98)00242-7

    Article  Google Scholar 

  26. P. Saha and N. Zuber, “Point of net vapor generation and vapor void fraction in subcooled boiling,” in Proc. 5th Int. Heat Transfer Conf. (IHTC-5), Tokyo, Japan, Sept. 3–7, 1974 (Japan Society of Mechanical Engineers, Tokyo, 1974), Vol. 4, pp. 175–179. https://doi.org/10.1615/IHTC5.430

  27. A. E. Bergles, “Burnout in boiling heat transfer. Part II. Subcooled and lowquality forced-convection systems,” Nucl. Saf. 18 (2), 154–167 (1977).

    Google Scholar 

  28. N. V. Vasil’ev, Yu. A. Zeigarnik, K. A. Khodakov, and V. M. Fedulenko, “The nature of "gas” burnout,” High Temp. 53, 837–840 (2015).

    Article  Google Scholar 

  29. A. P. Ornatsky, “The effect of basic regime parameters and channel geometry on critical heat fluxes in forced convection of subcooled water,” Heat Transfer – Sov. Res. 1 (3), 17–22 (1969).

    Google Scholar 

  30. S. G. Kandlikar, “Critical heat flux in subcooled flow boiling — An assessment of current understanding and future directions of research,” Multiphase Sci. Technol. 13, 207–232 (2001). https://doi.org/10.1615/MultScienTechn.v13.i3-4.40

    Article  Google Scholar 

  31. R. D. Boyd, “Subcooled flow boiling critical heat flux (CHF) and its application to fusion energy components. Part I. A review of fundamentals of CHF and related data base,” Fusion Technol. 7, 7–30 (1985). https://doi.org/10.13182/FST85-A24515

    Article  Google Scholar 

  32. D. D. Hall and I. Mudawar, “Critical heat flux (CHF) for water flow in tubes — II.: Subcooled CHF correlations,” Int. J. Heat Mass Transfer 43, 2605–2640 (2000). https://doi.org/10.1016/S0017-9310(99)00192-1

    Article  Google Scholar 

  33. G. P. Celata, M. Cumo, and A. Mariani, “Assessment of correlations and models for the prediction of CHF in water subcooled flow boiling,” Int. J. Heat Mass Transfer 37, 237–255 (1994). https://doi.org/10.1016/0017-9310(94)90096-5

    Article  Google Scholar 

  34. L. S. Tong, “Boundary-layer analysis of flow boiling crisis,” Int. J. Heat Mass Transfer 11, 1208–1211 (1968). https://doi.org/10.1016/0017-9310(68)90037-9

    Article  Google Scholar 

  35. G. P. Celata, M. Cumo, and A. Mariani, “CHF in highly subcooled flow boiling with and without turbulence promoters,” in Proc. European Two-Phase Flow Group Meeting, Stockholm, Sweden, June 1–3, 1992 (Stockholm, 1992), paper no. C1.

  36. G. P. Celata, M. Cumo, and A. Mariani, “Subcooled water boiling CHF with very high heat fluxes,” Rev. Gen. Tech. 31, 106–114 (1992).

    Google Scholar 

  37. L. S. Tong, “An evaluation of the departure from nucleate boiling in bundles of reactor fuel rods,” Nucl. Sci. Eng. 33, 7–15 (1968). https://doi.org/10.13182/NSE68-A20912

    Article  Google Scholar 

  38. J. Weisman and S. Ileslamlou, “A phenomenological model for prediction of critical heat flux under highly subcooled conditions,” Fusion Technol. 13, 654–659 (1988). https://doi.org/10.13182/FST88-A25140

    Article  Google Scholar 

  39. Y. Katto, “A prediction model of subcooled water flow boiling CHF for pressure in the region 0.1–20.0 MPa,” Int. J. Heat Mass Transfer 35, 1115–1123 (1992). https://doi.org/10.1016/0017-9310(92)90172-O

    Article  Google Scholar 

  40. C. H. Lee and I. Mudawar, “A mechanistic critical heat flux model for subcooled flow boiling based on local bulk flow conditions,” Int. J. Multiphase Flow 14, 711–728 (1988). https://doi.org/10.1016/0301-9322(88)90070-5

    Article  Google Scholar 

  41. D. Hall and I. Mudawar, “Critical heat flux (CHF) for water flow in tubes — I. Compilation and assessment of the world CHF data,” Int. J. Heat Mass Transfer 43, 2573–2604 (2000). https://doi.org/10.1016/S0017-9310(99)00191-X

    Article  Google Scholar 

  42. V. V. Yagov, Heat Transfer in Single-Phase Media and in Phase Transitions (Mosk. Energ. Inst., Moscow, 2014) [in Russian].

    Google Scholar 

  43. D. C. Groeneveld, L. K. H. Leung, P. L. Kirillov, V. P. Bobkov, I. P. Smogalev, V. N. Vinogradov, X. C. Huang, and R. Royer, “The 1995 look-up table for critical heat flux in tubes,” Nucl. Eng. Des., 163, 1–23 (1996). https://doi.org/10.1016/0029-5493(95)01154-4

    Article  Google Scholar 

  44. G. Liang and I. Mudawar, “Review of channel flow boiling enhancement by surface modification, and instability suppression schemes,” Int. J. Heat Mass Transfer 146, 118864 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118864

    Article  Google Scholar 

  45. A. V. Dedov, “A review of modern methods for enhancing nucleate boiling heat transfer,” Therm. Eng. 66, 881–915 (2019). https://doi.org/10.1134/S0040601519120012

    Article  Google Scholar 

  46. D. E. Kim, D. I. Yu, D. W. Jerng, M. H. Kim, and H. S. Ahn, “Review of boiling heat transfer enhancement on micro/nanostructured surfaces,” Exp. Therm. Fluid Sci. 66, 173–196 (2015). https://doi.org/10.1016/j.expthermflusci.2015.03.023

    Article  Google Scholar 

  47. A. S. Surtaev, V. S. Serdyukov, and A. N. Pavlenko, “Nanotechnologies in thermophysics: Heat transfer and crisis phenomena in boiling,” Ross. Nanotekhnol. 11 (11–12), 18–32 (2016).

    Google Scholar 

  48. A. V. Dedov, A. T. Komov, A. N. Varava, and V. V. Yagov, “Hydrodynamics and heat transfer in swirl flow under conditions of one-side heating. Part 2: Boiling heat transfer. Critical heat fluxes,” Int. J. Heat Mass Transfer 53, 4966–4975 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.035

    Article  Google Scholar 

  49. H. Kinoshita, T. Ioshida, H. Nariai, and F. Inasaka, “Study of the mechanism of critical heat flux enhancement for subcooled flow boiling in a tube with internal twisted tape under subcooled boiling conditions,” Heat Transfer Jpn. Res. 25, 293–307 (1996).

    Article  Google Scholar 

  50. I. Mudawar and D. E. Maddox, “Enhancement of critical heat flux from high power microelectronic heat sources in a flow channel,” Trans. ASME: J. Electron. Packag. 112, 241–248 (1990). https://doi.org/10.1115/1.2904373

    Article  Google Scholar 

  51. I. A. Popov, A. V. Shchelchkov, Yu. F. Gortyshov, and N. N. Zubkov, “Heat transfer enhancement and critical heat fluxes in boiling of microfinned surfaces,” High Temp. 55, 524–534 (2017).

    Article  Google Scholar 

  52. M. C. Chyu and A. Bergles, “Horizontal-tube falling-film evaporation with structured surfaces,” J. Heat Transfer 111, 518–524 (1989). https://doi.org/10.1115/1.3250708

    Article  Google Scholar 

  53. A. S. Surtaev, A. N. Pavlenko, D. V. Kuznetsov, V. I. Kalita, D. I. Komlev, A. Yu. Ivannikov, and A. A. Radyuk, “Heat transfer and crisis phenomena at pool boiling of liquid nitrogen on the surfaces with capillary-porous coatings,” Int. J. Heat Mass Transfer 108, 146–155 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.100

    Article  Google Scholar 

  54. X. S. Wang, Z. B. Wang, and Q. Z. Chen, “Research on manufacturing technology and heat transfer characteristics of sintered porous surface tubes,” Adv. Mater. Res. 97–101, 1161–1165 (2010). https://doi.org/10.4028/www.scientific.net/AMR.97-101.1161

    Article  Google Scholar 

  55. N. V. Vasil’ev, A. Yu. Varaksin, Yu. A. Zeigarnik, K. A. Khodakov, and A. V. Epel’fel’d, “Characteristics of subcooled water boiling on structured surfaces,” High Temp. 55, 880–886 (2017).

    Article  Google Scholar 

  56. I. V. Suminov, P. N. Belkin, A. V. Epel’fel’d, V. B. Lyudin, B. L. Krit, and A. M. Borisov, Plasma-Electrolytic Surface Modification of Metals and Alloys (Tekhnosfera, Moscow, 2011), Vol. 2 [in Russian].

    Google Scholar 

  57. Z. Yao, Y. W. Lu, and S. G. Kandlikar, “Fabrication of nanowires on orthogonal surfaces of microchannels and their effect on pool boiling,” J. Micromech. Microeng. 22, 115005 (2012). https://doi.org/10.1088/0960-1317/22/11/115005

    Article  Google Scholar 

  58. M. S. Sarwar, Y. H. Yeong, and S. H. Chang, “Subcooled flow boiling CHF enhancement with porous surface coatings,” Int. J. Heat Mass Transfer 50, 3649–3657 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.011

    Article  Google Scholar 

  59. Yu. Kuzma-Kichta, A. Leontyev, A. Lavrikov, M. Shustov, and K. Suzuki, “Boiling investigation in the microchannel with nano-particles coating,” in Proc. 15th Int. Heat Transfer Conf., Kyoto, Japan, Aug. 10–15, 2014, paper id. IHTC15-9214. https://doi.org/10.1615/IHTC15.fbl.009214.

  60. A. Bar-Cohen and C. A. Holloway, “Thermal science and engineering — from macro to nano in 2000 years,” in Proc. 15th Int. Heat Transfer Conf., Kyoto, Japan, Aug. 10–15, 2014, paper id. IHTC15-FL01. https://doi.org/10.1615/IHTC15.FL.000001

  61. V. V. Kuznetsov and A. S. Shamirzaev, “Flow boiling heat transfer mechanism in minichannels,” in Proc. ASME 5th Int. Conf. on Nanochannels, Microchannels and Minichannels, Puebla, Mexico, June 18–20, 2007 (American Society of Mechanical Engineers, New York, 2007), in Ser.: Proceedings of ASME, Vol. 4272, pp. 1113–1121. https://doi.org/10.1115/ICNMM2007-30210

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research under research project no. 20-18-50244.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Vasil’ev.

Additional information

Translated by T. Krasnoshchekova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, N.V., Zeigarnik, Y.A. & Khodakov, K.A. Boiling in Forced Convection of Subcooled Liquid as a Method for Removing High Heat Fluxes (Review): Part 2. Critical Heat Fluxes and Heat-Transfer Enhancement. Therm. Eng. 69, 313–325 (2022). https://doi.org/10.1134/S004060152205007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004060152205007X

Keywords:

Navigation