Skip to main content
Log in

Will Energy Transition Be Capable to Halt the Global Warming and Why the Climate Change Projections are so Wrong?

  • GENERAL SUBJECTS
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract—

The current state-of-art of studies aimed at forecasting the development of world energy and its influence on the Earth’s atmosphere and climate is analyzed. Advantages of applying a historical-extrapolation approach to forecasting the development of world energy and other anthropogenic sources affecting the planet’s atmosphere and climate, and also comprehensive consideration of natural climatic factors and natural variability features of the global climate are demonstrated. It is shown that a pattern adequately reflecting the change in the world’s energy consumption and its carbon intensity was presented as a result of a genetic (based on the historical development regularities) world energy development forecast elaborated at the Moscow Power Engineering Institute (MPEI) more than 30 years ago. The cumulative carbon dioxide emission estimates for the period of 1990‒2020 obtained using this approach are fully consistent with the actual data following from the world energy statistics1. By using this approach, it became possible to predict an essential transformation of the world energy mix (energy transition) at the beginning of the current century, which manifested itself in the growing role of carbon-free energy sources, primarily renewable ones. The predictions carried out in the 1990s using the MPEI’s combined climatic model, which combines the principles of dynamic and statistical modeling of the global climatic system and takes into account the effect of natural climatic factors and the climatic system’s internal features with using a genetic forecast of world energy consumption and carbon dioxide emission for the period of 1990‒2020, showed an encouraging consistency with the data of observed global temperature variation dynamics. The prediction results show that the majority of the most radical energy consumption and corresponding carbon dioxide emission scenarios are in reality unfeasible, and the model predictions of global climatic changes performed according to these scenarios are also extremely unlikely. At the same time, it is stated that, to achieve the goals of preventing the average global temperature increase by more than 2°C in comparison with the preindustrial period, it is necessary, along with decreasing the consumption of fossil fuel, to develop, on significant scales, carbon dioxide capture technologies, both biological (forest recreation, protection from forest fires, etc.) and geological (direct disposal).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. This work uses data of the United Nations Statistical and Demographic Services (UN, https://data.un.org/), British Petroleum Company (BP, https://www.bp.com), United States Carbon Dioxide Information Analysis Center (CDIAC, http://cdiac. ornl.gov), Intergovernmental Panel on Climate Change http://www.ipcc.ch), United States National Oceanic and Atmospheric Administration (NOAA/ESRL, ftp://aftp.cmdl.noaa. gov/products/trends/co2/), University of East Anglia’s (UEA) Climatic Research Unit (CRU, http://www.cru.uea.ac.uk/cru/ data/temperature/), and Global Carbon Capture and Storage Institute (GCCSI, http://www.globalccsinstitute.com).

  2. In this article, we use the global average air temperature values prepared by the CRU specialists based on the instrumental observation results.

REFERENCES

  1. Climate Change 2013, Vol. 1: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assesssment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (Cambridge Univ. Press, Cambridge, 2013).

  2. V. V. Klimenko, A. V. Klimenko, S. Yu. Snytin, and M. V. Fedorov, “Energy and the climate: what does science really know about thеm,” Therm. Eng. 41 (1) 4–10 (1994).

  3. V. V. Klimenko, A. V. Klimenko, and A. G. Tereshin, “Power engineering and the climate on the eve of the new century: Forecasts and reality,” Therm. Eng. 48 (10), 854–861 (2001).

    Google Scholar 

  4. V. V. Klimenko, A. V. Klimenko, and A. G. Tereshin, “ “Test of developing long-term forecasts of world energy impact on the Earth’s atmosphere,” Izv., Atmos. Ocean. Phys. 51 (2) 138–147 (2015).https://doi.org/10.1134/S0001433815020073

  5. K. Mattes, B. Funke, M. E. Andersson, L. Barnard, J. Beer, P. Charbonneau, M. A. Clilverd, T. D. de Wit, M. Haberreiter, A. Hendry, C. H. Jackman, M. Kretzschmar, T. Kruschke, M. Kunze, U. Langematz, et al., “Solar forcing for CMIP 6 (v 3.2),” Geosci. Model Dev. 10, 2247–2302 (2017). https://doi.org/10.5194/gmd-10-2247-2017

    Article  Google Scholar 

  6. J. H. Jungclaus, E. Bard, M. Baroni, P. Braconnot, J. Cao, L. P. Chini, T. Egorova, M. A. Clilverd, T. D. de Wit, M. Haberreiter, A. Hendry, C. H. Jackman, M. Kretzschmar, T. Kruschke, M. Kunze, et al., “The PMIP 4 contribution to CMIP 6. Part 3: The last millennium, scientific objective, and experimental design for the PMIP 4 past 1000 simulations,” Geosci. Model Dev. 10, 4005–4033 (2017). https://doi.org/10.5194/gmd-10-4005-2017

    Article  Google Scholar 

  7. P. Brohan, J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, “Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850,” J. Geophys. Res.: Atmos. 111, D12106 (2006). https://doi.org/10.1029/2005JD006548

    Article  Google Scholar 

  8. Climate Change. The IPCC Scientific Assessment, Ed. by J. T. Houghton, G. J. Jenkins, and J. J. Ephraums (Cambridge Univ. Press, Cambridge, 1990).

    Google Scholar 

  9. Anthropogenic Climate Change, Ed. by M. I. Budyko and Yu. A. Izrael (Univ. of Arizona Press, Tucson, Ariz., 1991).https://doi.org/10.4135/9781412939591.n44

  10. V. V. Klimenko, S. Yu. Snytin, and M. V. Fedorov, “Energy industry and the upcoming climate change in 1990–2020,” Teploenergetika, No. 6, 14–20 (1990). [in Russian]

    Google Scholar 

  11. V. V. Klimenko, “Why is global warming slowing down?,” Dokl. Earth Sci. 440, 1419–1422 (2011).https://doi.org/10.1134/S1028334X11100023

    Article  Google Scholar 

  12. Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, Ed. by J. T. Houghton, B. A. Callander, and S. C. Verney (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  13. Special Report On Emission Scenarios, Ed. by N. Nakićenović and R. Swart (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  14. R. H. Moss, J. A. Edmonds, K. A. Hibbard, M. R. Manning, S. K. Rose, D. P. van Vuuren, T. R. Carter, S. Emori, M. Kainuma, T. Kram, G. A. Meehl, J. F. B. Mitchell, N. Nakicenovic, K. Riahi, S. J. Smith, et al, “The next generation of scenarios for climate change research and assessment,” Nature 463, 747–756 (2010). https://doi.org/10.1038/nature08823

    Article  Google Scholar 

  15. D. C. North, Institutions, Institutional Change and Economic Performance (Cambridge Univ. Press, Cambridge, 1990). https://doi.org/10.1017/CBO9780511808678

  16. V. V. Klimenko, “Influence of climatic and geographic conditions on energy consumption,” Physics-Doklady. 339 (11), 319–332 (1994).

    Google Scholar 

  17. Energy Statistics Yearbook 2018 (United Nations, New York, 2021).

  18. BP Statistical Review of World Energy 2021 (British Petroleum, London, 2021). https://www.bp.com/content/ dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf

  19. Global Energy Review 2021. Assessing the Effects of Economic Recoveries on Global Energy Demand and CO 2 Emissions in 2021 (International Energy Agency, Paris, 2021).

  20. V. V. Klimenko, A. V. Klimenko, O. V. Mikushina, and A. G. Tereshin, “To avoid global warming by 2°C — Mission impossible,” Therm. Eng. 63, 605–610 (2016). https://doi.org/10.1134/S0040601516090020

    Article  Google Scholar 

  21. World Population Prospects: The 2019 Revision (United Nations, New York, 2019).

  22. G. Roshan, M. Arab, and V. Klimenko, “Modeling the impact of climate change on energy consumption and carbon dioxide emissions of buildings in Iran,” J. Environ. Health Sci. Eng. 17, 889–906 (2019). https://doi.org/10.1007/s40201-019-00406-6

    Article  Google Scholar 

  23. A. V. Klimenko, V. V. Klimenko, A. G. Tereshin, and E. V. Fedotova, “Impact of climate change on energy production, distribution, and consumption in Russia,” Therm. Eng. 65, 247–257 (2018). https://doi.org/10.1134/S0040601518050051

    Article  Google Scholar 

  24. A. J. Toynbee, A Study of History, Abridgement by D.C. Somervel (in 2 vol.) (Oxford Univ. Press, Oxford, 1987).

  25. T. A. Boden, R. J. Andres, and G. Marland, Global, Regional, and National Fossil-Fuel CO 2 Emissions (U.S.A. Carbon Dioxide Information Analysis Center; Oak Ridge National Laboratory, U. S. Department of Energy, Oak Ridge, Tenn., 2017). https://doi.org/10.3334/CDIAC/00001_V2017.

  26. P. Tans and R. Keeling, Global Greenhouse Gas Reference Network. Trends in Atmospheric Carbon Dioxide (NOAA/ESRL, 2014). http://www.esrl.noaa.gov/gmd/ ccgg/trends/

  27. V. V. Klimenko, A. V. Klimenko, and A. G. Tereshin, “From Rio to Paris via Kyoto: How the efforts to protect the global climate affect the world energy development,” Therm. Eng. 66, 769–778 (2019). https://doi.org/10.1134/S0040601519110028

    Article  Google Scholar 

  28. V. V. Klimenko and A. G. Tereshin, “Unconventional gas and transformation of the global carbon balance,” Dokl. Earth Sci. 453, 1113–1116 (2013).https://doi.org/10.1134/S1028334X13110032

    Article  Google Scholar 

  29. Energy, Electricity and Nuclear Power Estimates for the Period up to 2050 (International Atomic Energy Agency, Vienna, 2021).

  30. V. V. Klimenko, O. V. Mikushina, and A. G. Tereshin, “Dynamics of biotic carbon fluxes under different scenarios of forest area changes,” Izv., Atmos. Ocean. Phys. 56, 405–413 (2020).https://doi.org/10.1134/S0001433820040039

    Article  Google Scholar 

  31. Global Status of Carbon Capture and Storage CCS 2020 (Global CCS Institute, Melbourne, Australia, 2020).

  32. D. Möller, “Estimation of the global man-made sulphur emission,” Atmos. Environ. 18, 19–27 (1984). https://doi.org/10.1016/0004-6981(84)90225-7

    Article  Google Scholar 

  33. N. Yu. Kudryavtsev, V. V. Klimenko, V. B. Prokhorov, and S. Yu. Snytin, “Prospects fоr reducing sulfur oxide emissions frоm fossil fuel cоmbustiоn,” Therm. Eng. 42 (2), 95–101 (1995).

    Google Scholar 

  34. J.-F. Lamarque, T. C. Bond, V. Eyring, C. Granier, A. Heil, Z. Klimont, D. Lee, C. Liousse, A. Mieville, B. Owen, M. G. Schultz, D. Shindell, S. J. Smith, E. Stehfest, J. van Aardenne, et al., “Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application,” Atmos. Chem. Phys. 10, 7017–7039 (2010). https://doi.org/10.5194/acp-10-7017-2010

    Article  Google Scholar 

  35. Emission Database for Global Atmospheric Research (EDGAR). Release Version 4.2. 2010 (European Commission, Joint Research Centre (JRC) / PBL Netherlands Environmental Assessment Agency, 2010). http://edgar.jrc.ec.europe.eu

  36. N. Huneeus, O. Boucher, F. Chevallier, H. Denier van der Gon, and C. Granier, Inverted and Documented Aerosol Emissions for the Period 2001 to 2010, AER D66.4 (Laboratoire de Météorologie Dynamique, Paris, 2013).

  37. T. Diehl, A. Heil, M. Chin, X. Pan, D. Streets, M. Schultz, and S. Kinne, “Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments,” Atmos. Chem. Phys. Discuss. 12, 24895–24954 (2012). https://doi.org/10.5194/acpd-12-24895-2012

    Article  Google Scholar 

  38. W. Aas, A. Mortier, V. Bowersox, R. Cherian, G. Faluvegi, H. Fagerli, J. Hand, Z. Klimont, C. Galy-Lacaux, C. M. B. Lehmann, C. L. Myhre, G. Myhre, D. Olivié, K. Sato, and J. Quaas et al., “Global and regional trends of atmospheric sulfur,” Sci. Rep. 9, 953 (2019). https://doi.org/10.1038/s41598-018-37304-0

    Article  Google Scholar 

  39. Energy for Tomorrow’s World: WEC Commission Global Report (Kogan Page, London, 1993).

  40. N. Nakicenovic, A. Grubler, and A. McDonald, Global Energy Perspectives (Cambridge Univ. Press, Cambridge, 1998). https://doi.org/10.1002/ep.670180305

  41. V. V. Klimenko, A. V. Klimenko, T. N. Andreichenko, V. V. Dovgalyuk, O. V. Mikushina, A. G. Tereshin, and M. V. Fedorov, Energy, Nature, and Climate (Mosk. Energ. Inst., Moscow, 1997) [in Russian].

    Google Scholar 

  42. V. V. Klimenko, O. V. Mikushina, and A. G. Tereshin, “A combined model for analysis and projection of the regional air temperature dynamics,” in Proc. 23rd International Symp. on Atmospheric and Ocean Optics: Atmospheric Physics, Irkutsk, Russia, July 3–7, 2017 (SPIE, 2017), in Ser.: Proceedings of SPIE, Vol. 10466, paper no. 104666I. https://doi.org/10.1117/12.2287753

  43. J. Olsen, N. J. Anderson, and M. F. Knudsen, “Variability of the North Atlantic Oscillation over the past 5,200 years,” Nat. Geosci. 5, 808–812 (2012). https://doi.org/10.1038/ngeo1589

    Article  Google Scholar 

  44. V. A. Semenov, M. Latif, D. Dommenget, N. S. Keenlyside, A. Strehz, T. Martin, and W. Park, “The impact of North Atlantic–Arctic multidecadal variability on Northern Hemisphere surface air temperature,” J. Clim. 23, 5668–5677 (2010). https://doi.org/10.1175/2010JCLI3347.1

    Article  Google Scholar 

  45. J. Li, C. Sun, and F.-F. Jin, “NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability,” Geophys. Res. Lett. 40, 5497–5502 (2013). https://doi.org/10.1002/2013GL057877

    Article  Google Scholar 

  46. E. R. Cook, R. D. D’Arrigo, and K. R. Briffa, “A reconstruction of the North Atlantic Oscillation using tree-ring chronology from North America and Europe,” Holocene 8, 9–17 (1998). https://doi.org/10.1191/095968398677793725

    Article  Google Scholar 

  47. M. F. Knudsen, M.-S. Seidenkrantz, B. H. Jacobsen, and A. Kuipers, “Tracking the Atlantic multidecadal oscillation through the last 8,000 years,” Nat. Commun. 2, 178 (2011). https://doi.org/10.1038/ncomms1186

    Article  Google Scholar 

  48. J. W. Hurrell, “Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation,” Science 269, 676–679 (1995). https://doi.org/10.1126/science.269.5224.676

    Article  Google Scholar 

  49. Y. Kosaka and S.-P. Xie, “The tropical Pacific as a key pacemaker of the variable pace of global warming,” Nat. Geosci. 9, 669–674 (2016). https://doi.org/10.1038/ngeo2770

    Article  Google Scholar 

  50. O. V. Mikushina, V. V. Klimenko, and V. V. Dovgalyuk, “History and forecast of solar activity,” Astron. Astrophys. Trans. 12, 315–326 (1997). https://doi.org/10.1080/10556799708232086

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Scientific Foundation (project no. 21-79-30013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Klimenko.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Translated by V. Filatov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimenko, V.V., Klimenko, A.V., Tereshin, A.G. et al. Will Energy Transition Be Capable to Halt the Global Warming and Why the Climate Change Projections are so Wrong?. Therm. Eng. 69, 149–162 (2022). https://doi.org/10.1134/S0040601522030065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601522030065

Keywords:

Navigation