Skip to main content
Log in

New Correlations for Two Phase Flow Pressure Drop in Homogeneous Flows Model

  • HEAT AND MASS TRANSFER AND PROPERTIES OF WORKING FLUIDS AND MATERIALS
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

The calculation of pressure drop in pipes two-phase flow is essential in different areas. Even though several studies concerning this issue have been conducted, an accurate correlation is still required. The objective of the paper is to develop correlations for two-phase friction pressure drop and mixture viscosity. The new correlation can be used to compute the friction pressure drop for two phase flow in homogenous approach modeling. The original equation is generated from a similitude between the mixture viscosity for two-phase flows and the thermal conductivity of the porous structure. The new correlation is evaluated against 846 experimental data of friction pressure drop collected from literature on circular pipes; the experimental data including different working fluids such as R1234ze (E), R32, R-600a R717, R134a, R410A and carbon dioxide (CO2) at different hydraulic inner diameters and mass flux. Models are assessed based on the relative percentage error and the probability density function (PDF). The predictions by the new correlation and other correlations from the literature are compared based on some experimental data. It is found that new correlation has a mean absolute relative deviation (MARD) of 30%. It is proved that these new correlations of two-phase flow pressure drop can be used to predict the experiment measurements of pressure drop, on circular pipes, minichannels and microchannels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. In a serial model it is assumed that heat passes along all components of the material, and in a parallel model across all components of the porous material by analogy with the calculation of the impedance of an electrical circuit.

REFERENCES

  1. Sudarja, A. Haq, Deendarlianto, Indarto, and A. Widyaparaga, “Experimental study on theflow pattern and pressure gradient of airwater two-phase flow in a horizontal circular mini-channel,” J. Hydrodyn. 31, 102–116 (2019). https://doi.org/10.1007/s42241-018-0126-2

    Article  Google Scholar 

  2. N. O. Zubov, O. N. Kabankov, V. V. Yagov, and L. A. Sukomel, “Prediction of friction pressure drop for low pressure two phase flows on the basis of approximate analytical models,” Therm. Eng. 64, 898–911 (2017). https://doi.org/10.1134/S0040601517120114

    Article  Google Scholar 

  3. C. Lu, R. Kong, S. Qiao, J. Larimer, S. Kim, S. Bajorek, K. Tienc, and C. Hoxie, “Frictional pressure drop analysis for horizontal and vertical air-water two phase flows in different pipe sizes,” Nucl. Eng. Des. 332, 147–161 (2018). https://doi.org/10.1016/j.nucengdes.2018.03.036

    Article  Google Scholar 

  4. M. Sheikholeslamia, M. Darzib, and M. K. Sadoughic, “Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure,” Int. J. Heat Mass Transfer 122, 643–650 (2018).https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.015

    Article  Google Scholar 

  5. R. C. Martinelli and D. B. Nelson, “Prediction of pressure drop during forced circulation boiling water,” Trans. ASME 70, 695–702 (1948).

    Google Scholar 

  6. L. Friedel, “Improved friction pressure drop correlations for horizontal and vertical two phase pipe flow,” in Proc. Eur. Two-Phase Flow Group Meeting, Ispara, Italy,1979, paper E2.

  7. K. Lia, G. Hea, J. Jiang, and Y. D. Caia, “Flow boiling heat transfer characteristics and pressure drop of R290/oil solution in smooth horizontal tubes,” Int. J. Heat Mass Transfer 119, 777–790 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.134

    Article  Google Scholar 

  8. Y. S. Muzychka and M. M. Awad, “Asymptotic generalizations of the Lockhart–Martinelli method for two phase flows,” J. Fluids Eng. 132 (3), 1–12 (2010). https://doi.org/10.1115/1.4001157

    Article  Google Scholar 

  9. B. A. Shannak, “Frictional pressure drop of gas liquid two-phase flow in pipes,” Nucl. Eng. Des. 238, 3277–3284 (2008). https://doi.org/10.1016/j.nucengdes.2008.08.015

    Article  Google Scholar 

  10. W. H. McAdams, W. K. Woods, and L. C. Heroman, “Vaporization inside horizontal tubes II-Benzene-oil mixtures,” Trans. ASME 64, 193–200 (1942).

    Google Scholar 

  11. A. Cicchitti, C. Lombardi, M. Silvestri, G. Soldaini, and R. Zavattarelli, “Two-phase cooling experiments: Pressure drop, heat transfer and burnout measurements,” Energ. Nucl. (Milan) 7, 407–425 (1960).

    Google Scholar 

  12. M. M. Awad and Y. S. Muzychka, “Effective property models for homogeneous two-phase flows,” Exp. Therm. Fluid Sci. 33, 106–113 (2008). https://doi.org/10.1016/j.expthermflusci.2008.07.006

    Article  Google Scholar 

  13. D. C. Lee, D. Kim, S. Park, J. Lim, and Y. Kim, “Evaporation heat transfer coefficient and pressure drop of R-1233zd(E) in a brazed plate heat exchanger,” Appl. Therm. Eng. 130, 1147–1155 (2018). https://doi.org/10.1016/j.applthermaleng.2017.11.088

    Article  Google Scholar 

  14. J. Zhang, M. RyhlKærn, T. Ommen, B. Elmegaard, and F. Haglind, “Condensation heat transfer and pressure drop characteristics of R134a, R1234ze(E), R245fa and R1233zd(E) in a plate heat exchanger,” Int. J. Heat Mass Transfer 128, 136–149 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.124

    Article  Google Scholar 

  15. R. W. Lockhartand and R. C. Martinelli, “Proposed correlation of data for isothermal two-phase, two component flow in pipes,” Chem. Eng. Prog. 45, 39–48 (1949).

    Google Scholar 

  16. D. Chisholm, “A theoretical basis for the Lockhart–Martinelli correlation for two-phase flow,” Int. J. Heat Mass Transfer 10, 1767–1778 (1967).

    Article  Google Scholar 

  17. K. I. Choi, A. S. Pamitran, C. Y. Oh, and J. T. Oh, “Two-phase pressure drop of R-410A in horizontal smooth minichannels,” Int. J. Refrig. 31, 119–129 (2008).

    Article  Google Scholar 

  18. W. Zhang, T. Hibiki, and K. Mishima, “Correlations of two-phase frictional pressure drop and void fraction in mini-channel,” Int. J. Heat Mass Transfer. 53, 453–465 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.011

    Article  MATH  Google Scholar 

  19. W. Li and Z. Wu, “A general correlation for adiabatic two-phase pressure drop in micro/mini-channels,” Int. J. Heat Mass Transfer 53, 2732–2739 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.029

    Article  Google Scholar 

  20. Y. Xu and X. Fang, “A new correlation of two-phase frictional pressure drop for evaporating flow in pipes,” Int. J. Refrig. 35, 2039–2050 (2012). https://doi.org/10.1016/j.ijrefrig.2012.06.011

    Article  Google Scholar 

  21. X. Fang, Y. Xu, X. Su, and R. Shi, “Pressure drop and friction factor correlations of supercritical flow,” Nucl. Eng. Des. 242, 323–330 (2012). https://doi.org/10.1016/j.nucengdes.2011.10.041

    Article  Google Scholar 

  22. H. M. Steinhagen and K. Heck, “A simple friction pressure drop correlation for two-phase flow in pipes,” Chem. Eng. Proc.: Process Intensification 20 (6), 291–308 (1986). https://doi.org/10.1016/0255-2701(86)80008-3

    Article  Google Scholar 

  23. A. Cavallini, G. Censi, D. Col, D. Doretti, L. Longo, and G. A. Rossetto, “Condensation of halogenated refrigerants inside smooth tubes,” HVAC&R Res. 8, 429–451 (2002). https://doi.org/10.1080/10789669.2002.10391299

    Article  Google Scholar 

  24. A. L. Souza and M. M. Pimenta, “Prediction of pressure drop during horizontal two-phase flow of pure and mixed refrigerants,” in Proc. ASME Cavitation and Multiphase Flow Symp., Hilton Head, SC, Aug. 13–18,1995 (ASME, New York, 1995), pp. 161–171.

  25. A. Cioncolin and J. R. Thome, “Pressure drop prediction in annular two-phase flow in macroscale tubes and channels,” Int. J. Multiphase Flow 98, 321–330 (2017). https://doi.org/10.1016/j.ijmultiphaseflow.2016.11.003

    Article  MathSciNet  Google Scholar 

  26. C. Yao, H. L. Xue, X. Liu, and C. Y. Hao, “Investigation on the frictional pressure drop of gas liquid two-phase flows in vertical downward tubes,” Int. Commun. Heat Mass Transfer 91, 138–149 (2018). https://doi.org/10.1016/j.icheatmasstransfer.2017.11.015

    Article  Google Scholar 

  27. K. Mishima and T. Hibiki, “Some characteristics of air-water two-phase flow in small diameter vertical tubes,” Int. J. Multiphase Flow 22, 703–712 (1996). https://doi.org/10.1016/0301-9322(96)00010-9

    Article  MATH  Google Scholar 

  28. X. Li and T. Hibiki, “Frictional pressure drop correlation for two-phase flows in mini and micro single-channels,” Int. J. Multiphase Flow 90, 29–45 (2017). https://doi.org/10.1016/j.ijmultiphaseflow.2016.12.003

    Article  MathSciNet  Google Scholar 

  29. A. S. Pamitran, K. I. Choi, J. T. Oh, and P. Hrnjak, “Characteristics of two-phase flow pattern transitions and pressure drop of five refrigerants in horizontal circular small tubes,” Int. J. Refrig. 33, 578–588 (2010). https://doi.org/10.1016/j.ijrefrig.2009.12.009

    Article  Google Scholar 

  30. Y. W. Hwang and M. S. Kim, “The pressure drop in microtubes and the correlation development,” Int. J. Heat Mass Transfer 49, 1804–1812 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.040

    Article  Google Scholar 

  31. Y. Xu, X. Fang, X. Su, Z. Zhou, and W. Chen, “Evaluation of frictional pressure drop correlations for two-phase flow in pipes,” Nucl. Eng. Des. 253, 86–97 (2013). https://doi.org/10.1016/j.nucengdes.2012.08

    Article  Google Scholar 

  32. T. Bohdal, H. Charun, and M. Sikora, “Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels,” Int. J. Heat Mass Transfer 54, 1963–1974 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.01.005

    Article  Google Scholar 

  33. S. Garimella, A. Agarwal, and J. D. Killion, “Condensation pressure drop on circular microchannels,” Heat Transfer Eng. 26, 1–8 (2005). https://doi.org/10.1080/01457630590907176

    Article  Google Scholar 

  34. C. H. Son and H. K. Oh, “Condensation pressure drops of R22, R134a and R410A in a single circular microtube,” Heat Mass Transfer 48, 1437–1450 (2012).

    Article  Google Scholar 

  35. A. S. Dalkilic, O. Agra, I. Teke, and S. Wongwises, “Comparison of frictional pressure drop models during annular flow condensation of R600a in a horizontal tube a low mass flux and of R134a in a vertical tube at high mass flux,” Int. J. Heat Mass Transfer 53, 2052–2064 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.051

    Article  Google Scholar 

  36. Y. Y. Yan and T. F. Lin, “Condensation heat transfer and pressure drop of refrigerant R134a in a small pipe,” Int. J. Heat Mass Transfer 42, 697–708 (1999). https://doi.org/10.1016/S0017-9310(98)00195-1

    Article  Google Scholar 

  37. I. Y. Chen, K. S. Yang, Y. J. Chang, and C. C. Wang, “Two-phase pressure drops of air-water and R-410a in small horizontal tubes,” Int. J. Multiphase Flow 27, 1293–1299 (2001). https://doi.org/10.1016/S0301-9322(01)00004-0

    Article  MATH  Google Scholar 

  38. O. J. Kwon, B. H. Shon, and Y. T. Kang, “Experimental investigation on condensation heat transfer and pressure drop of a low GWP refrigerant R-1233zd(E) in a plate heat exchanger,” Int. J. Heat Mass Transfer 131, 1009–1021 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.114

    Article  Google Scholar 

  39. D. F. S. Tapia and G. Ribatski, “Two-phase frictional pressure drop in horizontal micro-scale channels: experimental data analysis and prediction method development,” Int. J. Refrig. 79, 143–163 (2017). https://doi.org/10.1016/j.ijrefrig.2017.03.024

    Article  Google Scholar 

  40. S. Novianto, A. S. Pamitran, R. Koestoer, and K. Saito, “Two-phase frictional pressure drop of propane with prediction methods of viscosity and density in 500 µm diameter tube,” IOP Conf. Ser.: Mater. Sci. Eng. 316, 012058 (2018). https://doi.org/10.1088/1757-899X/316/1/012058

    Article  Google Scholar 

  41. T. A. Ganat and M. Hrairi, “Gas–liquid two-phase upward flow through a vertical pipe: Influence of pressure drop on the measurement of fluid flow rate,” Energies 11, 2937–2947 (2018). https://doi.org/10.3390/en11112937

    Article  Google Scholar 

  42. K. Li, G. He, J. Jiang, Y. Li, and D. Cai, “Flow boiling heat transfer characteristics and pressure drop of R290/oil solution in smooth horizontal tubes,” Int. J. Heat Mass Transfer 119, 777–790 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.134

    Article  Google Scholar 

  43. K. Aroonratab and S. Wongwisesb, “Condensation heat transfer and pressure drop characteristics of R-134a flowing through dimpled tubes with different helical and dimpled pitches,” Int. J. Heat Mass Transfer 121, 620–631 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.001

    Article  Google Scholar 

  44. G. Lillo, R. Mastrullo, A. W. Mauro, and L. Viscito, “Flow boiling of R32 in a horizontal stainless steel tube with 6.00 mm ID. Experiments, assessment of correlations and comparison with refrigerant R410A,” Int. J. Refrig. 97, 143–156 (2019). https://doi.org/10.1016/j.ijrefrig.2018.09.024

    Article  Google Scholar 

  45. C. Yao, H. Li, Y. Xue, X. Liu, and C. Hao, “Investigation on the frictional pressure drop of gas liquid two-phase flows in vertical downward tubes,” Int. Commun. Heat Mass Transfer 91, 138–149 (2018). https://doi.org/10.1016/j.icheatmasstransfer.2017.11.015

    Article  Google Scholar 

  46. A. E. Dukler, M. Wicks, and R. G. Cleveland, “Frictional pressure drop in two-phase flow: A. A comparison of existing correlations for pressure loss and holdup,” AIChE J. 10, 38–43 (1964). https://doi.org/10.1002/aic.690100117

    Article  Google Scholar 

  47. A. E. Dukler, M. Wicks, and R. G. Cleveland, “Frictional pressure drop in two-phase flow: B. An approach through similarity analysis,” AIChE J. 10, 44–51 (1964). https://doi.org/10.1002/aic.690100118

    Article  Google Scholar 

  48. D. R. H. Beattie and P. B. Whalley, “A simple two-phase frictional pressure drop calculation method,” Int. J. Multiphase Flow 8, 83–87 (1982). https://doi.org/10.1016/0301-9322(82)90009-X

    Article  Google Scholar 

  49. S. Lin, C. C. K. Kwork, R. Y. Li, Z. H. Chen, and Z. Y. Chen, “Local frictional pressure drop during vaporization of R12 through capillary tubes,” Int. J. Multiphase Flow 17, 95–102 (1991). https://doi.org/10.1016/0301-9322(91)90072-B

    Article  MATH  Google Scholar 

  50. W. W. Akers, H. A. Deans, and O. K. Crosser, “Condensation heat transfer within horizontal tubes,” Chem. Eng. Prog., Symp. Ser. 55, 171–176 (1959).

    Google Scholar 

  51. A. Agarwal and S. Garimella, “Representative results for condensation measurements at hydraulic diameters ∼100 microns,” J. Heat Transfer 132, 041010 (2010). https://doi.org/10.1115/1.4000879

    Article  Google Scholar 

  52. R. Ali, B. R. Palm, and M. Maqbool, “Experimental investigation of two-phase pressure drop in a microchannel,” Heat Transfer Eng. 32, 1126–1138 (2011). https://doi.org/10.1080/01457632.2011.562463

    Article  Google Scholar 

  53. A. Cavallini, G. Censi, D. Col, D. Doretti, L. Longo, and G. A. Rossetto, “Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube,” Int. J. Refrig. 24, 73–87 (2001). https://doi.org/10.1016/S0140-7007(00)00070-0

    Article  Google Scholar 

  54. M. Ducoulombier, S. Colasson, J. Bonjour, and P. Haberschill, “Carbon dioxide flow boiling in a single microchannel—Part I: Pressure drops,” Exp. Therm. Fluid Sci. 35, 581–596 (2011). https://doi.org/10.1016/j.expthermflusci.2010.12.010

    Article  Google Scholar 

  55. J. M. Quiben “Experimental and analytical study of two-phase pressure drops during evaporation in horizontal tubes,” Thesis No. 3337 (EPFL, Lausanne, 2005). https://doi.org/10.5075/epfl-thesis-3337

  56. Md. A. Hossain, Y. Onaka, and A. Miyara, “Experimental study on condensation heat transfer and pressure drop in horizontal smooth tube for R1234ze(E), R32 and R410A,” Int. J. Refrig. 35, 927–938 (2012). https://doi.org/10.1016/j.ijrefrig.2012.01.002

    Article  Google Scholar 

  57. H. S. Lee and C. H. Son, “Condensation heat transfer and pressure drop characteristics of R-290, R-600a, R-134a and R-22 in horizontal tubes,” Heat Mass Transfer 46, 571–584 (2010). https://doi.org/10.1007/s00231-010-0603-9

    Article  Google Scholar 

  58. N. Liu, J. M. Li, J. Sun, and H. S. Wang, “Heat transfer and pressure drop during condensation of R152a in circular and square microchannels,” Exp. Therm. Fluid Sci. 47, 60–67 (2013). https://doi.org/10.1016/j.expthermflusci.2013.01.002

    Article  Google Scholar 

  59. R. Revellin and J. R. Thome, “Adiabatic two-phase frictional pressure drops in microchannels,” Exp. Therm. Fluid Sci. 31, 673–685 (2007). https://doi.org/10.1016/j.expthermflusci.2006.07.001

    Article  Google Scholar 

  60. J. D. Da Silva and G. Ribatski, “Experimental two-phase frictional pressure drop of R245fa and R134a in a 1.1 mm I.D. tube,” in 3° Brazilian Meeting on Boiling, Condensation and Multiphase Flow, Curitiba, May 7–8,2012.

  61. F. Ramírez-Rivera, A. L’opez-Belchí, F. Vera-García, J. R. García-Cascales, and F. Illan-Gomez, “Two phase flow pressure drop in multiport mini-channel tubes using R134a and R32 as working fluids,” Int. J. Therm. Sci. 92, P. 17–33 (2015). https://doi.org/10.1016/j.ijthermalsci.2015.01.014

    Article  Google Scholar 

  62. R. Oliemans, “Two phase flow in gas-transmission pipelines,” in Proc. Petroleum Division ASME Meeting, Mexico, 19–24 Sept.1976, ASME paper No. 76-Pet25.

  63. S. Arrhenius, “On the internal friction of solutions in water,” Z. Phys. Chem. (Leipzig), No. 1, 285–298 (1887).

  64. W. F. Davidson, P. H. Hardie, C. G. R. Humphreys, A. A. Markson, A. R. Mumford, and T. Ravese, “Studies of heat transmission through boiler tubing at pressures from 500–3300 lbs,” Trans. ASME 65, 553–591 (1943).

    Google Scholar 

  65. W. L. Owens, “Two-phase pressure gradient,” ASME Int. Develop. Heat Transfer, No. 2, 363–368 (1961).

    Google Scholar 

  66. M. Fourar and S. Bories, “Experimental study of air-water two-phase flow through a fracture (narrow channel),” Int. J. Multiphase Flow 21, 621–637 (1995). https://doi.org/10.1016/0301-9322(95)00005-I

    Article  MATH  Google Scholar 

  67. F. García, J. M. García, R. García, and D. D. Joseph, “Friction factor improved correlations for laminar and turbulent gas–liquid flow in horizontal pipelines,” Int. J. Multiphase Flow 33, 1320–1336 (2007). https://doi.org/10.1016/j.ijmultiphaseflow.2007.06.003

    Article  Google Scholar 

  68. F. García, R. García, J. C. Padrino, C. Mata, J. L. Trallero, and D. D. Joseph, “Power law and composite power law friction factor correlations for laminar and turbulent gas–liquid flow in horizontal pipelines,” Int. J. Multiphase Flow 29, 1605–1624 (2003). https://doi.org/10.1016/S0301-9322(03)00139-3

    Article  MATH  Google Scholar 

  69. T. B. Drew, E. C. Koo, and W. H. McAdams, “The friction factor for clean round pipe,” Trans. AIChE 28, 56–72 (1932).

    Google Scholar 

  70. B. S. Petukhov, “Heat transfer and friction in turbulent pipe flow with variable physical properties,” Adv. Heat Transfer 6, 503–564 (1970). https://doi.org/10.1016/S0065-2717(08)70153-9

    Article  Google Scholar 

  71. V. Glielinski, “New equations for heat and mass transfer in turbulent pipe and channel flow,” Int. Chem. Eng. 16, 359–367 (1976).

    Google Scholar 

  72. P. K. Swamee and A. K. Jain, “Explicit equation for pipe flow problems,” J. Hydraul. Div. ASCE 102, 657–664 (1976).

    Google Scholar 

  73. S. W. Churchill, “Friction factor equation spans all fluid flow regimes,” Chem. Eng. 84, 91–92 (1977).

    Google Scholar 

  74. R. J. Phillips, Forced Convection, Liquid Cooled, Microchannel Heat Sinks, Master’s Thesis (Massachusetts Inst. of Technology, Cambridge, MA, 1987). http://hdl.handle.net/1721.1/14921.

  75. X. Fang, Y. Xu, and Z. Zhou, “New correlations of single-phase friction factor for turbulent pipe flow and evaluation of existing single-phase friction factor correlations,” Nucl. Eng. Des. 241, 897–902 (2011). https://doi.org/10.1016/j.nucengdes.2010.12.019

    Article  Google Scholar 

  76. D. R. Chaudhary and R. C. Bhandari, “Heat transfer through a three-phase porous medium,” J. Phys. D: Appl. Phys. 1, 815–817 (1968). https://doi.org/10.1088/0022-3727/1/6/418

    Article  Google Scholar 

  77. L. Ouyang, Single phase and multiphase fluid flow in horizontal wells, Ph. D. Thesis (Stanford Univ., Stanford, CA, 1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maher, D., Hana, A. & Habib, S. New Correlations for Two Phase Flow Pressure Drop in Homogeneous Flows Model. Therm. Eng. 67, 92–105 (2020). https://doi.org/10.1134/S0040601520020032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601520020032

Keywords:

Navigation