Abstract—
The main results obtained for the last decade in studying the possibilities of enhancing boiling heat transfer and increasing critical heat fluxes are reviewed. Heat transfer enhancement methods involving the use of a modified/structured boiling surface obtained by means of mechanized processing, electrochemical technologies, plasma and ion deposition, laser emission, and subcooled liquid boiling are considered.
This is a preview of subscription content,
to check access.










Similar content being viewed by others
Notes
Yu.A. Kuzma-Kichta, A.V. Lavrikov, M.V. Shustov, P.S. Chursin, A.V. Chistyakova, Yu.A. Zvonarev, V.M. Zhukov, and L.T. Vasil’eva, “Studying Heat Transfer Enhancement for Water Boiling on a Surface with Micro- and Nanorelief,” Therm. Eng. 61 (3), 210–213 (2014).
REFERENCES
V. V. Yagov, “Generic features and puzzles of nucleate boiling,” Int. J. Heat Mass Transfer 52, 5241–5249 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.071
D. E. Kim, D. I. Yu, D. W. Jerng, M. H. Kim, and H. S. Ahn, “Review of boiling heat transfer enhancement on micro/nanostructured surfaces,” Exp. Therm. Fluid Sci. 66, 173–196 (2015). https://doi.org/10.1016/j.expthermflusci.2015.03.023
H. S. Ahn and M. H. Kim, “A review on critical heat flux enhancement with nanofluids and surface modification,” J. Heat Transfer 134, 024001-3 (2012). https://doi.org/10.1115/1.4005065
M. Shojaeian and A. Kosar, “Pool boiling and flow boiling on micro- and nanostructured surfaces,” Exp. Therm. Fluid Sci. 63, 45–73 (2015). https://doi.org/10.1016/j.expthermflusci.2014.12.016
S. Moria and Y. Utaka, “Critical heat flux enhancement by surface modification in a saturated pool boiling: A review,” Int. J. Heat Mass Transfer 108, 2534–2557 (2017).
V. M. Wasekar and R. M. Manglik, “A review of enhanced heat transfer in nucleate pool boiling of aqueous surfactant and polymeric solutions,” J. Enhanced Heat Transfer 6, 135–150 (1999). https://doi.org/10.1615/JEnhHeatTransf.v6.i2-4.70
L. Cheng, D. Mewes, and A. Luke, “Boiling phenomena with surfactants and polymeric additives: A state-of-the-art review,” Int. J. Heat Mass Transfer 50, 2744–2771 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.016
N. N. Zubkov, “Obtaining subsurface cavities by deforming cutting to intensify bubble boiling,” Vestn. Mashinostr., No. 11, 75–79 (2014).
R. Hosseini, A. Gholaminejad, and M. Nabil, “Concerning the effect of surface material on nucleate boiling heat transfer of R-113,” J. Electron. Cool. Therm. Control 1, 22–27 (2011). https://doi.org/10.1115/AJTEC2011-44498
D. W. Zhong, J. Meng, Z. X. Li, and Z. Y. Guo, “Critical heat flux for downward-facing saturated pool boiling on pin fin surfaces,” Int. J. Heat Mass Transfer 87, 201–211 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.001
T. Chen, “An experimental investigation of nucleate boiling heat transfer from an enhanced cylindrical surface,” Appl. Therm. Eng. 59, 355–361 (2013). https://doi.org/10.1016/j.applthermaleng.2013.05.033
S. W. Chen, J. C. Hsieh, C. T. Chou, H. H. Lin, S. C. Shen, and M. J. Tsai, “Experimental investigation and visualization on capillary and boiling limits of microgrooves made by different processes,” Sens. Actuat-ors A: Phys. 139, 78–87 (2007).
S. Ryu, J. Han, J. Kim, C. Lee, and Y. Nam, “Enhanced heat transfer using metal foam liquid supply layers for micro heat spreaders,” Int. J. Heat Mass Transfer 108, 2338–2345 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.071
G. I. Idrisova, A. A. Lopatin, and V. I. Osipova, “Heat transfer intensification during boiling of R-134A freon on mini- and micro-rough surfaces,” Naucho-Tekh. Vestn. Povolzh’ya., No. 1, 26–29 (2011).
I. A. Popov, A. V. Shchelchkov, Yu. F. Gortyshov, and N. N. Zubkov, “Heat transfer enhancement and critical heat fluxes in boiling of microfinned surfaces,” High Temp. 55, 524–534 (2017). https://doi.org/10.1134/S0018151X17030208
O. A. Volodin, N. I. Pecherkin, A. N. Pavlenko, N. N. Zubkov, and Yu. L. Bityutskaya, “Heat transfer at boiling of R114/R21 refrigerants mixture film on microstructured surfaces,” J. Phys.: Conf. Ser. 891, 012 035 (2017). https://doi.org/10.1088/1742-6596/891/1/012035
O. A. Volodin, N. I. Pecherkin, A. N. Pavlenko, N. N. Zubkov, and Yu. L. Bityutskaya, “Influence of surface structuring type on heat transfer during evaporation and boiling in draining films,” Interekspo Geo-Sibir’ 5, 157–162 (2017).
O. Volodin, N. Pecherkin, A. Pavlenko, and N. Zubkov, “Heat transfer and crisis phenomena at boiling of refrigerant films falling down the surfaces obtained by deformational cutting,” Interfacial Phenom. Heat Transfer 5, 215–222 (2017). https://doi.org/10.1615/InterfacPhenomHeatTransfer.2018025507
O. A. Volodin, N. I. Pecherkin, A. N. Pavlenko, and N. N. Zubkov, “Features of boiling of draining films of refrigerants on surfaces with semi-closed subsurface cavities,” Sinergiya Nauk 1, 1106–1119 (2017).
A. V. Shchelchkov, I. A. Popov, and N. N. Zubkov, “Boiling of a liquid on microstructured surfaces under free-convection conditions,” J. Eng. Phys. Thermophys. 89, 1152–1160 (2016).
I. S. Antonenkova, A. A. Sukhikh, and E. V. Ezhov, “Thermal technical characteristics of the evaporator and condenser THU on R22 with surfaces processed by the deforming cutting technology,” Kholod. Tekh., No. 10, 30–37 (2016).
I. I. Gogonin, “The influence of the wetting angle on heat transfer during boiling,” Teplofiz. Aeromekh. 17, 261–267 (2010).
S. K. Das, N. Putra, and W. Roetzel, “Pool boiling characteristics of nano-fluids,” Int. J. Heat Mass Transfer 46, 851–862 (2003). https://doi.org/10.1016/S0017-9310(02)00348-4
S. M. You, J. H. Kim, and K. H. Kim, “Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer,” Appl. Phys. Lett. 83, 3374–3376 (2003). https://doi.org/10.1063/1.1619206
S. U. S. Choi, “Nanofluids: From vision to reality through research,” J. Heat Transfer 131, 033 106 (2009). https://doi.org/10.1115/1.3056479
X. Fang, Y. Chen, H. Zhang, W. Chen, A. Dong, and R. Wang, “Heat transfer and critical heat flux of nanofluid boiling: A comprehensive review,” Renewable Sustainable Energy Rev. 62, 924–940 (2016). https://doi.org/10.1016/j.rser.2016.05.047
G. Liang and I. Mudawar, “Review of pool boiling enhancement with additives and nanofluids,” Int. J. Heat Mass Transfer 124, 423–453 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.046
M. Z. Sulaiman, D. Matsuo, K. Enoki, and T. Okawa, “Systematic measurements of heat transfer characteristics in saturated pool boiling of water-based nanofluids,” Int. J. Heat Mass Transfer 102, 264–276 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.017
J. H. Lee, T. Lee, and Y. H. Jeong, “The effect of pressure on the critical heat flux in water-based nanofluids containing Al2O3 and Fe3O4 nanoparticles,” Int. J. Heat Mass Transfer 61, 432–438 (2013).
I. C. Bang and S. H. Chang, “Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool,” Int. J. Heat Mass Transfer 48, 2407–2419 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047
S. S. Park and N. J. Kim, “Critical heat flux enhancement in pool-boiling heat transfer using oxidized multi-wall carbon nanotubes,” Int. J. Energy Res. 39, 1391–1401 (2015). https://doi.org/10.1002/er.3341
R. Kumar and D. Milanova, “Effect of surface tension on nanotube nanofluids,” Appl. Phys. Lett. 94, 073 107 (2009). https://doi.org/10.1063/1.3085766
K.-J. Park and D. Jung, “Enhancement of nucleate boiling heat transfer using carbon nanotubes,” Int. J. Heat Mass Transfer 50, 4499–4502 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.012
Yu. A. Kuzma-Kichta, V. M. Zhukov, A. V. Lavrikov, N. A. Stenina, A. V. Chistyakova, P. S. Chursin, Sh. Sholl’, and M. V. Shustov, “Study of contact angles and boiling crisis on a surface with artificial nanorelief,” Tepl. Protsessy Tekh., No. 7, 290–294 (2013).
H. D. Kim, J. Kim, and M. H. Kim, “Experimental studies on CHF characteristics of nano-fluids at pool boiling,” Int. J. Multiphase Flow 33, 691–706 (2007). https://doi.org/10.1016/j.ijmultiphaseflow.2007.02.007
J. Barber, D. Brutin, and L. Tadrist, “A review on boiling heat transfer enhancement with nanofluids,” Nanoscale Res Lett. 6, 280 (2011). https://doi.org/10.1186/1556-276X-6-280
A. L. Sirotkina, E. D. Fedorovich, and V. V. Sergeev, “Heat transfer in nanofluids (studies review). 2: Boiling and boiling crisis,” Tepl. Protsessy Tekh., No. 3, 106–112 (2017).
N. V. Vasil’ev, A. Yu. Varaksin, Yu. A. Zeigarnik, K. A. Khodakov, and A. V. Epel’fel’d, “Characteristics of subcooled water boiling on structured surfaces,” High Temp. 55, 880–886 (2017). https://doi.org/10.1134/S0018151X17060189
S. B. Seo and I. C. Bang, “Effects of Al2O3 nanoparticles deposition on critical heat flux of R-123 in flow boiling heat transfer,” Nucl. Eng. Technol. 47, 398–406 (2015). https://doi.org/10.1016/j.net.2015.04.003
M. V. Shustov, Yu. A. Kuzma-Kichta, and A. V. Lavrikov, “Nanoparticle coating of a microchannel surface is an effective method for increasing the critical heat flux,” Therm. Eng. 64, 301–306 (2017). https://doi.org/10.1134/S0040601517040073
G. Harish, V. Emlin, and V. Sajith, “Effect of surface particle interactions during pool boiling of nanofluids,” Int. J. Therm. Sci. 50, 2318–2327 (2011). https://doi.org/10.1016/j.ijthermalsci.2011.06.019
G. P. Narayan, K. B. Anoop, and S. K. Das, “Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes,” J. Appl. Phys. 102, 074 317 (2007). https://doi.org/10.1063/1.2794731
D. Wen, “Influence of nanoparticles on boiling heat transfer,” Appl. Therm. Eng. 41, 2–9 (2012). https://doi.org/10.1016/j.applthermaleng.2011.08.035
L. L. Manetti, M. T. Stephen, P. A. Beck, and E. M. Cardoso, “Evaluation of the heat transfer enhancement during pool boiling using low concentrations of Al2O3–water based nanofluid,” Exp. Therm. Fluid Sci. 87, 191–200 (2017). https://doi.org/10.1016/j.expthermflusci.2017.04.018
Y. H. Diao, C. Z. Li, Y. H. Zhao, Y. Liu, and S. Wang, “Experimental investigation on the pool boiling characteristics and critical heat flux of Cu-R141b nanorefrigerant under atmospheric pressure,” Int. J. Heat Mass Transfer 89, 110–115 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.043
K.-J. Park and D. Jung, “Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning,” Energy Build 39, 1061–1064 (2007).https://doi.org/10.1016/j.enbuild.2006.12.001
E. I. Eid, R. A. Khalaf-Allah, S. H. Taher, and A. A. Al-Nagdy, “An experimental investigation of the effect of the addition of nano Aluminum oxide on pool boiling of refrigerant 134A,” Heat Mass Transfer 53, 2597–2607 (2017). https://doi.org/10.1007/s00231-017-2010-y
X. Tang, Y.-H. Zhao, and Y.-H. Diao, “Experimental investigation of the nucleate pool boiling heat transfer characteristics of d-Al2O3-R141b nanofluids on a horizontal plate,” Exp. Therm. Fluid Sci. 52, 88–96 (2014). https://doi.org/10.1016/j.expthermflusci.2013.08.025
H. Kim, J. Kim, and M. H. Kim, “Effect of nanoparticles on CHF enhancement in pool boiling of nano-fluids,” Int. J. Heat Mass Transfer 49, 5070–5074 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2006.07.019
H. S. Ahn and M. H. Kim, “The boiling phenomenon of alumina nanofluid near critical heat flux,” Int. J. Heat Mass Transfer 62, 718–728 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.054
A. Mourgues, V. Hourtané, T. Muller, and M. Caron-Charles, “Boiling behaviors and critical heat flux on a horizontal and vertical plate in saturated pool boiling with and without ZnO nanofluid,” Int. J. Heat Mass Transfer 57, 595–607 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.073
S. Song, J. H. Lee, and S. H. Chang, “CHF enhancement of SiC nanofluid in pool boiling experiment,” Exp. Therm. Fluid Sci. 52, 12–18 (2014). https://doi.org/10.1016/j.expthermflusci.2013.08.008
S. B. White, A. J. Shih, and K. P. Pipe, “Effects of nanoparticle layering on nanofluid and base fluid pool boiling heat transfer from a horizontal surface under atmospheric pressure,” J. Appl. Phys. 107, 114 302 (2010). https://doi.org/10.1063/1.3342584
F. Zhang and A. M. Jacobi, “Aluminum surface wettability changes by pool boiling of nanofluids,” Colloids Surf., A 506, 438–444 (2016). https://doi.org/10.1016/j.colsurfa.2016.07.026
H. Kim, J. Buongiorno, L.-W. Hu, and T. McKrell, “Nanoparticle deposition effects on the minimum heat flux point and quench front speed during quenching in water-based alumina nanofluids,” Int. J. Heat Mass Transfer 53, 1542–1553 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.029
S. D. Park, S. Lee, S. Kang, I. C. Bang, J. H. Kim, H. S. Shin, and D. W. Lee, “Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux,” Appl. Phys. Lett. 97, 023 103(2010). https://doi.org/10.1063/1.3459971
H. S. Ahn, J.-W. Jang, M. Seol, J. M. Kim, D.-J. Yun, C. Park, H. Kim, D. H. Youn, J. Y. Kim, and G. Park, “Self-assembled foam-like graphene networks formed through nucleate boiling,” Sci. Rep. 3, 1396 (2013). https://doi.org/10.1038/srep01396
J. S. Coursey and J. Kim, “Nanofluid boiling: The effect of surface wettability,” Int. J. Heat Fluid Flow 29, 1577–1585 (2008). .https://doi.org/10.1016/j.ijheatfluidflow.2008.07.004
C. Hsu, M. Lee, C. Wu, and P. Chen, “Effect of interlaced wettability on horizontal copper cylinders in nucleate pool boiling,” Appl. Therm. Eng. 112, 1187–1194 (2017). https://doi.org/10.1016/j.applthermaleng.2016.10.176
S. Kumar, Y. Chang, and P. Chen, “Effect of heterogeneous wettable structures on pool boiling performance of cylindrical copper surfaces,” Appl. Therm. Eng. 127, 1184–1193 (2017). https://doi.org/10.1016/j.applthermaleng.2017.08.069
Y. Takata, S. Hidaka, M. Masuda, and T. Ito, “Pool boiling on a superhydrophilic surface,” Int. J. Energy Res. 27, 111–119 (2003). https://doi.org/10.1002/er.861
L. Zhang, T. Wanga, Y. Jiang, S. Kim, and C. Guo, “A study of boiling on surfaces with temperature-dependent wettability by lattice Boltzmann method,” Int. J. Heat Mass Transfer 122, 775–784 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.026
J. Kim, S. Kang, D. Yu, H. Park, K. Moriyama, and M. Kim, “Smart surface in flow boiling: Spontaneous change of wettability,” Int. J. Heat Mass Transfer 105, 147–156 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.047
C. Li, Z. Wang, P.-I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4, 1084–1088 (2008). https://doi.org/10.1002/smll.200700991
Z. Yao, Y. W. Lu, and S. G. Kandlikar, “Effects of nanowire height on pool boiling performance of water on silicon chips,” Int. J. Therm. Sci. 50, 2084–2090 (2011). https://doi.org/10.1016/j.ijthermalsci.2011.06.009
G. Liang and I. Mudawar, “Review of pool boiling enhancement by surface modification,” Int. J. Heat Mass Transfer 128, 892–933 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.026
Y. Wang, J. Luo, Y. Heng, D. Mo, and S. Lyu, “Wettability modification to further enhance the pool boiling performance of the micro nano bi-porous copper surface structure,” Int. J. Heat Mass Transfer 119, 333–342 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.080
C. Patil, K. Santhanam, and S. Kandlikar, “Development of a two-step electrodeposition process for enhancing pool boiling,” Int. J. Heat Mass Transfer 79, 989–1001 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.062
P. Xu, Q. Li, and Y. Xuan, “Enhanced boiling heat transfer on composite porous surface,” Int. J. Heat Mass Transfer 80, 107–114 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.048
R. Khodabandeh and R. Furberg, “Heat transfer, flow regime and instability of a nano- and micro-porous structure evaporator in a two-phase thermosiphon loop,” Int. J. Therm. Sci. 49, 1183–1192 (2010). https://doi.org/10.1016/j.ijthermalsci.2010.01.016
C. Byon, S. Choi, and S. J. Kim, “Critical heat flux of bi-porous sintered copper coatings in FC-72,” Int. J. Heat Mass Transfer 65, 655–661 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.029
M. S. El-Genk and A. F. Ali, “Enhanced nucleate boiling on copper micro-porous surfaces,” Int. J. Multiphase Flow 36, 780–792 (2010). https://doi.org/10.1016/j.ijmultiphaseflow.2010.06.003
M. S. El-Genk and A. F. Ali, “Enhancement of saturation boiling of PF-5060 on microporous copper dendrite surfaces,” J. Heat Transfer 132, 071 501 (2010).
G. S. Hwang and M. Kaviany, “Critical heat flux in thin, uniform particle coatings,” Int. J. Heat Mass Transfer 49, 844–849 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.020
C. H. Li, T. Li, P. Hodgins, C. N. Hunter, A. A. Voevodin, J. G. Jones, and G. P. Peterson, “Comparison study of liquid replenishing impacts on critical heat flux and heat transfer coefficient of nucleate pool boiling on multiscale modulated porous structures,” Int. J. Heat Mass Transfer 54, 3146–3155 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.062
S. Li, R. Furberg, M. S. Toprak, B. Palm, and M. Muhammed, “Nature-inspired boiling enhancement by novel nanostructured macroporous surfaces,” Adv. Funct. Mater. 18, 2215–2220 (2008). https://doi.org/10.1002/adfm.200701405
J. H. Kim, A. Gurung, M. Amaya, S. M. Kwark, and S. M. You, “Microporous coatings to maximize pool boiling heat transfer of saturated R-123 and water,” J. Heat Transfer 137, 081 501 (2015). https://doi.org/10.1115/1.4030245
S. Jun, J. Kim, S. M. You, and H. Y. Kim, “Effect of heater orientation on pool boiling heat transfer from sintered copper microporous coating in saturated water,” Int. J. Heat Mass Transfer 103, 277–284 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.030
S. Jun, J. Kim, D. Son, H. Y. Kim, and S. M. You, “Enhancement of pool boiling heat transfer in water using sintered copper microporous coatings,” Nucl. Eng. Technol. 48, 932–940 (2016). https://doi.org/10.1016/j.net.2016.02.018
S. Jun, H. Wi, A. Gurung, M. Amaya, and S. M. You, “Pool boiling heat transfer enhancement of water using brazed copper microporous coatings,” J. Heat Transfer 138, 071 502 (2016). https://doi.org/10.1115/1.4032988
S. Sarangi, J. A. Weibel, and S. V. Garimella, “Quantitative evaluation of the dependence of pool boiling heat transfer enhancement on sintered particle coating characteristics,” J. Heat Transfer 139, 021 502 (2017). https://doi.org/10.1115/1.4034901
S. J. Thiagarajan, R. Yang, C. King, and S. Narumanchi, “Bubble dynamics and nucleate pool boiling heat transfer on microporous copper surfaces,” Int. J. Heat Mass Transfer 89, 1297–1315 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.013
D. H. Min, G. S. Hwang, Y. Usta, O. N. Cora, M. Koc, and M. Kaviany, “2-D and 3-D modulated porous coatings for enhanced pool boiling,” Int. J. Heat Mass Transfer 52, 2607–2613 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2008.12.018
X. Ji, J. Xu, Z. Zhao, and W. Yang, “Pool boiling heat transfer on uniform and nonuniform porous coating surfaces,” Exp. Therm. Fluid Sci. 48, 198–212 (2013). https://doi.org/10.1016/j.expthermflusci.2013.03.002
A. Jaikumar, A. Rishi, A. Gupta, and S. G. Kandlikar, “Microscale morphology effects of copper–graphene oxide coatings on pool boiling characteristics,” J. Heat Transfer 139. P. 111 509 (2017). https://doi.org/10.1115/1.4036695
A. M. Gheitaghya, H. Saffaria, and G. Q. Zhang, “Effect of nanostructured microporous surfaces on pool boiling augmentation,” Neat Transfer Eng. 40, 762–771 (2019). https://doi.org/10.1080/01457632.2018.1442310
A. Surtaev, D. Kuznetsov, V. Serdyukov, A. Pavlenko, V. Kalita, D. Komlev, A. Ivannikov, and A. Radyuk, “Structured capillary-porous coatings for enhancement of heat transfer at pool boiling,” Appl. Therm. Eng. 133, 532–542 (2018). https://doi.org/10.1016/j.applthermaleng.2018.01.051
A. Surtaev, A. Pavlenko, D. Kuznetsov, V. Serdyukov, V. Kalita, D. Komlev, A. Ivannikov, and A. Radyuk, “Heat transfer and crisis phenomena at pool boiling of liquid nitrogen on the surfaces with capillary-porous coatings,” Int. J. Heat Mass Transfer 108, 146–155 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.100
M. Župančič, M. Može, P. Gregorčič, and I. Golobič, “Nanosecond laser texturing of uniformly and non-uniformly wettable micro structured metal surfaces for enhanced boiling heat transfer,” Appl. Surf. Sci. 399, 480–490 (2017). https://doi.org/10.1016/j.apsusc.2016.12.120
I. Yadroitsev, I. Shishkovsky, P. Bertrand, and I. Smurov, “Manufacturing of finestructured 3D porous filter elements by selective laser melting,” Appl. Surf. Sci. (2009) 255, 5523–5527 (2009). https://doi.org/10.1016/j.apsusc.2008.07.154
J. Sun, Y. Yang, and D. Wang, “Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting,” Adv. Mech. Eng. 49, 545–556 (2013). https://doi.org/10.1155/2012/427386
J. Y. Ho, K. K. Wong, and K. C. Leong, “Saturated pool boiling of FC-72 from enhanced surfaces produced by selective laser melting,” Int. J. Heat Mass Transfer 99, 107–121 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.073
K. K. Wong and K. C. Leong, “Saturated pool boiling enhancement using porous lattice structures produced by selective laser melting,” Int. J. Heat Mass Transfer 121, 46 (2018).
C. Zhang, L. Zhang, H. Xu, P. Li, and B. Qian, “Performance of pool boiling with 3D grid structure manufactured by selective laser melting technique,” Int. J. Heat Mass Transfer 128, 570–580 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.021
Y. Wang, Y. Shen, Z. Wang, J. Yang, N. Liu, and W. Huang, “Development of highly porous titanium scaffolds by selective laser melting,” Mater. Lett. 64, 674–676 (2010).
S. A. Romashevskiy, M. B. Agranat, and A. S. Dmitriev, “Thermal training of functional surfaces fabricated with femtosecond laser pulses,” High Temp. 54, 461–465 (2016).
C. Kruse, A. Tsubaki, C. Zuhlke, T. Anderson, D. Alexander, G. Gogos, and S. Ndao, “Secondary pool boiling effects,” Appl. Phys. Lett. 108, 051 602 (2016). https://doi.org/10.1063/1.4941081
P. N. Saltuganov, A. A. Ionin, S. I. Kudryashov, A. A. Rukhadze, A. I. Gavrilov, S. V. Makarov, A. A. Rudenko, and D. A. Zayarny, “Fabrication of superhydrophobic coating on stainless steel surface by femtosecond laser texturing and chemisorption of an hydrophobic agent,” J. Russ. Laser Res. 36, 81–85 (2015). https://doi.org/10.1007/s10946-015-9480-5
C. M. Kruse, T. Anderson, C. Wilson, C. Zuhlke, D. Alexander, G. Gogos, and S. Ndao, “Enhanced pool-boiling heat transfer and critical heat flux on femtosecond laser processed stainless steel surfaces,” Int. J. Heat Mass Transfer 82, 109–116 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.023
C. V. Ngo and D. M. Chun, “Control of laser-ablated aluminum surface wettability to superhydrophobic or superhydrophilic through simple heat treatment or water boiling post-processing,” Appl. Surf. Sci. 435, 974–982 (2018). https://doi.org/10.1016/j.apsusc.2017.11.185
S. Kim, H. D. Kim, H. Kim, H. S. Ahn, H. Jo, J. Kim, and M. H. Kim, “Effects of nano-fluid and surfaces with nano structure on the increase of CHF,” Exp. Therm. Fluid Sci. 34, 487–495 (2010). https://doi.org/10.1016/j.expthermflusci.2009.05.006
K. H. Chu, R. Enright, and E. N. Wang, “Structured surfaces for enhanced pool boiling heat transfer,” App-l. Phys. Lett. 100, 241 603 (2012). https://doi.org/10.1063/1.4724190
D. Coso, V. Srinivasan, M. C. Lu, J. Y. Chang, and A. Majumdar, “Enhanced heat transfer in biporous wicks in the thin liquid film evaporation and boiling regimes,” J. Heat Transfer 134, 101 501 (2012). https://doi.org/10.1115/1.4006106
A. Zou and S. C. Maroo, “Critical height of micro/nano structures for pool boiling heat transfer enhancement,” Appl. Phys. Lett. 103, 221 602 (2013). https://doi.org/10.1063/1.4833543
L. Dong, X. Quan, and P. Cheng, “An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures,” Int. J. Heat Mass Transfer 71, 189–196 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.068
B. S. Kim, S. Shin, S. J. Shin, K. M. Kim, and H. H. Cho, “Micro-nano hybrid structures with manipulated wettability using a two-step silicon etching on a large area,” Nanoscale Res. Lett. (2011) 6, 333 (2011). https://doi.org/10.1186/1556-276X-6-333
D. Cooke and S. G. Kandlikar, “Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels,” J. Heat Transfer 133, 163–172 (2011). https://doi.org/10.1115/FEDSM-ICNMM2010-31147
M. M. Rahman, M. Olceroglu, and M. McCarthy, “Role of wickability on the critical heat flux of structured superhydrophilic surfaces,” Langmuir 30, 11225–11234 (2014).
N. S. Dhillon, J. Buongiorno, and K. K. Varanasi, “Critical heat flux maxima during boiling crisis on textured surfaces,” Nature Commun. 6, 8247 (2015).
L. A. Sukomel and V. V. Yagov, “Possibilities for increasing critical heat fluxes during boiling on surfaces with porous coatings (review),” Vestn. Mosk. Energ. Inst., No. 4, 55–67 (2017).
S. G. Kandlikar, “A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation,” J. Heat Transfer 123, 1071–1079 (2001). https://doi.org/10.1115/1.1409265
R. Li and Z. Huang, “A new CHF model for enhanced pool boiling heat transfer on surfaces with micro-scale roughness,” Int. J. Heat Mass Transfer 109, 1084–1093 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.089
S. D. Park and I. C. Bang, “Experimental study of a universal CHF enhancement mechanism in nanofluids using hydrodynamic instability,” Int. J. Heat Mass Transfer 70, 844–850 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.066
S. H. Kim, G. C. Lee, J. Y. Kang, K. Moriyama, M. H. Kim, and H. S. Park, “Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface,” Int. J. Heat Mass Transfer 91, 1140–1147 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.120
D. I. Shim, G. Choi, N. Lee, T. Kim, B. S. Kim, and H. H. Cho, “Enhancement of pool boiling heat transfer using aligned silicon nanowire arrays,” ACS Appl. Mater. Interfaces 9, 17 595–17 602 (2017). https://doi.org/10.1021/acsami.7b01929
Y. Song, Y. Zhu, D. Preston, H. Cho, Z. Lu, and E. Wang, “Investigating the relationship between surface wickability and critical heat flux during pool boiling,” in Proc. 16th Int. Heat Transfer Conf. (IHTC-16), Beijing, China, Aug. 10–15,2018 (Begell House, Danbury, CT, 2018), id. IHTC16-23315.
I. A. Khaziev, A. V. Dedov, and S. D. Fedorovich, “Research wetting and Leidenfrost effects on structured surfaces in contact with water,” J. Phys.: Conf. Ser. 891, 012 021 (2017). https://doi.org/10.1088/1742-6596/891/1/012021
A. Jaikumar and S. G. Kandlikar, “Ultra-high pool boiling performance and effect of channel width with selectively coated open microchannels,” Int. J. Heat Mass Transfer 95, 795–805 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.061
A. Jaikumar and S. G. Kandlikar, “Pool boiling inversion through bubble induced macroconvection,” Appl. Phys. Lett. 110, 094 107 (2017). https://doi.org/10.1063/1.4941032
M. Rahman and M. McCarthy, “Boiling enhancement on nanostructured surfaces with engineered variations in wettability and thermal conductivity,” Heat Transfer Eng. 38, 1285–1295 (2017). https://doi.org/10.1080/01457632.2016.1242961
A. R. Betz, J. Jenkins, and D. Attinger, “Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces,” Int. J. Heat Mass Transfer 57, 733–741 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.080
C.-H. Choi, M. David, Z. Gao, A. Chang, M. Allen, H. Wang, and C.-H. Chang, “Large-scale generation of patterned bubble arrays on printed bi-functional boiling surfaces,” Sci. Rep. 6, 23 760 (2016).
B. J. Suroto, M. Tashiro, S. Hirabayashi, S. Hidaka, M. Kohno, and Y. Takata, “Effects of hydrophobic-spot periphery and subcooling on nucleate pool boiling from a mixed-wettability surface,” J. Therm. Sci. Technol. 8, 294–308 (2013).
S. Kumar, G. Kumar, M. Arenales, C.-C. Hsu, and P. Chen, “Elucidating the mechanisms behind the boiling heat transfer enhancement using nano-structured surface coatings,” Appl. Therm. Eng. 137, 868–891 (2018). https://doi.org/10.1016/j.applthermaleng.2018.03.092
M. M. Rahman, J. Pollack, and M. McCarthy, “Increasing boiling heat transfer using low conductivity materials,” Sci. Rep. 5, 13 145 (2015). https://doi.org/10.1038/srep13145
A. Fazeli, S. Bigham, and S. Moghaddam, “Microscale layering of liquid and vapor phases within microstructures for a new generation two-phase heat sink,” Int. J. Heat Mass Transfer 95, 368–378 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.005
A. V. Belyaev, A. N. Varava, A. V. Dedov, and A. T. Komov, “Critical heat flux at flow boiling of refrigerants in minichannels at high reduced pressure,” Int. J. Heat Mass Transfer 122, 732–739 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.027
A. V. Belyaev, A. N. Varava, A. V. Dedov, and A. T. Komov, “An experimental study of flow boiling in minichannels at high reduced pressure,” Int. J. Heat Mass Transfer 110, 360–373 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.045
X. Fang, Y. Yuan, A. Xu, L. Tian, and Q. Wu, “Review of correlations for subcooled flow boiling heat transfer and assessment of their applicability to water,” Fusion Eng. Des. 122, 52–63 (2017). https://doi.org/10.1016/j.fusengdes.2017.09.008
G. Zhu, Q. Bi, J. Yan, and H. Lv, “Experimental study of subcooled flow boiling heat transfer of water in a circular channel under one-side heating conditions,” Int. J. Heat Mass Transfer 119, 484–495 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.111
A. Richenderfer, A. Kossolapov, J. Seong, G. Saccone, E. Demarly, R. Kommajosyula, E. Baglietto, J. Buongiorno, and M. Bucci, “Investigation of subcooled flow boiling and CHF using high-resolution diagnostics,” Exp. Therm. Fuild Sci. 99, 35–58 (2018). https://doi.org/10.1016/j.expthermflusci.2018.07.017
L. Yin, R. Xu, P. Jiang, H. Cai, and L. Jia, “Subcooled flow boiling of water in a large aspect ratio microchannel,” Int. J. Heat Mass Transfer 112, 1081–1089 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.028
A. S. Shamirzaev, A. S. Mordovskoy, and V. V. Kuznetsov, “An experimental investigation of flow boiling heat transfer for water and refrigerants in microchannel heat exchangers,” AIP Conf. Proc. 1939, 020 040 (2018). https://doi.org/10.1063/1.5027352
D. C. Groeneveld, L. K. H. Leung, P. L. Kirillov, V. P. Bobkov, I. P. Smogalev, V. N. Vinogradov, X. C. Huangc, and E. Royerd, “The 1995 look-up table for critical heat flux in tubes,” Nucl. Eng. Des. 163, 1–23 (1996). https://doi.org/10.1016/0029-5493(95)01154-4
A. N. Varava, A. V. Dedov, A. T. Komov, and S. A. Malakhovskii, “Experimental investigation of critical heat flux under boiling in subcooled swirling flow under conditions of one-sided heating,” High Temp. 47, 843–848 (2009).
I. Mudawar and M. B. Bowers, “Ultra-high critical heat flux for subcooled water flow boiling – I: CHF data and parametric effects for small diameter tubes,” Int. J. Heat Mass Transfer 42, 1405–1428 (1999). https://doi.org/10.1016/S0017-9310(98)00241-5
A. V. Dedov, “Peculiarities of boiling in subcooled flow,” Therm. Eng. 56, 691–699 (2009).
A. V. Dedov, A. T. Komov, A. N. Varava, and V. V. Yagov, “Hydrodynamics and heat transfer in swirl flow under conditions of one-side heating. Part 2: Boiling heat transfer. Critical heat fluxes,” Int. J. Heat Mass Transfer 53, 4966 –4975 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.035
V. V. Yagov and V. A. Puzin, “Boiling crisis in conditions of forced motion of subcooled liquid,” Teploenergetika, No. 10, 52–54 (1985).
A. A. Avdeev, “Reynolds analogy for undeveloped surface boiling in forced motion conditions,” Teploenergetika, No. 3, 23–26 (1982).
Yu. A. Zeigarnik, “Regenerated boiling and enhancement of heat transfer,” High Temp. 39, 447–454 (2001).
A. V. Dedov, “Critical heat flowrates in subcooled flow boiling,” Therm. Eng. 57, 185–192 (2010).
O. A. Kabov, Yu. V. Lyulin, I. V. Marchuk, and D. V. Zaitsev, “Locally heated shear-driven liquid films in microchannels and minichannels,” Int. J. Heat Fluid Flow 28, 103–112 (2007). https://doi.org/10.1016/j.ijheatfluidflow.2006.05.010
E. Tkachenko, D. Zaitsev, E. Orlik, and O. Kabov, “Critical heat flux in locally heated liquid film moving under the action of gas flow in a mini-channel,” J. Phys.: Conf. Ser. 754, 032 019 (2016). https://doi.org/10.1088/1742-6596/754/3/032019
Funding
This work was supported by the Russian Scientific Foundation (grant no. 19-19-00410).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by V. Filatov
Rights and permissions
About this article
Cite this article
Dedov, A.V. A Review of Modern Methods for Enhancing Nucleate Boiling Heat Transfer. Therm. Eng. 66, 881–915 (2019). https://doi.org/10.1134/S0040601519120012
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0040601519120012