Skip to main content
Log in

The EUCLID/V2 Code Physical Models for Calculating Fuel Rod and Core Failures in a Liquid Metal Cooled Reactor

  • NUCLEAR POWER PLANTS
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract—

The article describes the basic models laid down in the second version of the EUCLID/V2 integrated code developed for carrying out end-to-end analysis of severe accidents in liquid metal cooled reactors. Brief information about the basic analogs of the code is given. Unlike the first version of the code, its second version includes additional tools for analyzing design-basis and beyond-design-basis accidents involving fuel pin, fuel assembly, and reactor core failures. To this end, the code is supplemented with additional modules using which it is possible to calculate fuel rod tightness failure as a consequence of its melting, escape of fission products into the coolant, their transport over the circuit, and release into the nuclear power plant rooms. The code also incorporates modules for calculating the core failure processes. Special attention is paid to the physical models for calculating the core materials' melting processes, motion of the produced melt, its interaction with the coolant and with other materials, and propagation of fission materials. For calculating the core failure processes, a multicomponent 3D model has been implemented. The methods used for calculating heat transfer and friction between the components are based on well-proven analytical and empirical relations for determining the heat transfer and friction coefficients. The coefficients presented in the article also depend on the obtained multicomponent flow motion regime and the type of components (metal and ceramics). The algorithms governing joint operation of the thermomechanical, thermal-hydraulic, neutronics, and the fuel rod thermal failure module are described. Emphasis is placed on data exchange methods in the course of an accident in the reactor. The approaches used for calculating the transport of fission products in the coolant and in the NPP rooms are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. A. Mosunova, “The EUCLID/V1 integrated code for safety assessment of liquid metal cooled fast reactors. Part 1: Basic models,” Therm. Eng. 65, 304–316 (2018). https://doi.org/10.1134/S0040601518050063

    Article  Google Scholar 

  2. V. M. Alipchenkov, A. V. Boldyrev, D. P. Veprev, Yu. A. Zeigarnik, P. V. Kolobaeva, E. V. Moiseenko, N. A. Mosunova, E. F. Seleznev, V. F. Strizhov, E. V. Usov, S. L. Osipov, V. S. Gorbunov, D. A. Afremov, and A. A. Semchenkov, “The EUCLID/V1 integrated code for safety assessment of liquid metal cooled fast reactors. Part 2: Validation and verification,” Therm. Eng. 65, 627–640 (2018). https://doi.org/10.1134/S004060151809001X

    Article  Google Scholar 

  3. V. M. Alipchenkov, A. M. Anfimov, D. A. Afremov, V. S. Gorbunov, Yu. A. Zeigarnik, A. V. Kudryavtsev, S. L. Osipov, N. A. Mosunova, V. F. Strizhov, and E. V. Usov, “Fundamentals, current state of the development of, and prospects for further improvement of the new-generation thermal-hydraulic computational HYDRA-IBRAE/LM code for simulation of fast reactor systems,” Therm. Eng. 63, 130–139 (2016). https://doi.org/10.1134/S0040601516020014

    Article  Google Scholar 

  4. E. V. Usov, A. A. Butov, V. I. Chukhno, I. A. Klimonov, I. G. Kudashov, V. S. Zhdanov, N. A. Pribaturin, N. A. Mosunova, V. F. Strizhov, Fuel Pin Melting in a Fast Reactor and Melt Solidification: Simulation Using the SAFR/V1 Module of the EVKLID/V2 Integral Code. Atomic Energy. 2018, v. 124, i. 3, pp. 147–153. https://doi.org/10.1007/s1051201803892

  5. E. V. Usov, A. A. Butov, V. I. Chukhno, I. A. Klimonov, I. G. Kudashov, V. S. Zhdanov, N. A. Pribaturin, N. A. Mosunova, V.F. Strizhov. SAFR/V1 (EVKLID/V2 Integral Code Module) Aided Simulation of Melt Movement Along the Surface of a Fuel Element in a Fast Reactor During a Serious Accident. Atomic Energy, 2018, v. 124, i. 4, pp. 232–237. https://doi.org/10.1007/s1051201803892

  6. D. A. Koltashev and A. A. Stakhanova, “Neutronic calculation of fast reactors by the EUCLID/V1 integrated code,” J. Phys.: Conf. Ser. 781, 012003 (2017). https://doi.org/10.1088/1742-6596/781/1/012003

    Google Scholar 

  7. D. P. Veprev, A. V. Boldyrev, S. Y. Chernov, and N. A. Mosunova, “Development and validation of the BERKUT fuel rod module of the EUCLID/V1 integrated computer code,” Ann. Nucl. Energy 113, 237–245 (2018). https://doi.org/10.1016/j.anucene.2017.11.038

    Article  Google Scholar 

  8. M. F. Filippov, P. V. Kolobaeva, N. A. Mosunova, and A. A. Sorokin, “AEROSOL-LM/Na aided simulation of fission product production and transport in the first loop of a fast reactor,” At. Energy 124, 266–271 (2018).

    Article  Google Scholar 

  9. E. V. Usov, A. A. Sorokin, V. I. Chukhno, N. A. Mosunova, Modeling of Oxide Layer Formation and Corrosion Products Coagulation and Transport in Lead Coolant Using the OXID Module of the HYDRA-IBRAE/LM Code. Atomic Energy, vol. 122, i. 3, pp. 172–177 (2017). https://doi.org/10.1007/s1051201804127

  10. O. Kh. Il’yasova, S. N. Nazarova, and A. A. Sorokin, “Tritium module for calculating the behavior of tritium in a loop of a reactor installation with sodium coolant,” At. Energy 124, 272–278 (2018).

    Article  Google Scholar 

  11. A SAS4A Study on the ULOF Initiating Phase Energetics of the Fast Breeder Reactor (FBR) (Japan Nuclear Energy Safety Organization, 2011), JNES/FBRG10-0004.

  12. H. Yamano, S. Fujita, Y. Tobita, K. Kamiyama, Sa. Kondo, K. Morita, E. A. Fischer, D. J. Brear, N. Shirakawa, X. Cao, M. Sugaya, M. Mizuno, S. Hosono, T. Kondo, W. Maschek, E. Kiefhaber, G. Buckel, A. Rineiski, M. Flad, T. Suzuki, P. Coste, S. Pigny, J. Louvet, and T. Cadiou, SIMMER-III: A Computer Program for LMFR Core Disruptive Accident Analysis. Version 3.A Model Summary and Program Description (O-arai Engineering Center, JNC, 2003), JNC-TN 9400 2003-071.

  13. Yu. M. Ashurko, A. V. Volkov, and K. F. Raskach, “Development of program modules with space-time kinetics for calculating unanticipated accidents in fast reactors,” At. Energy 114, 77–82 (2013).

    Article  Google Scholar 

  14. S. V. Alekseenko, V. E. Nakoryakov, and B. G. Pokusaev, Wave Flow of Liquid Films (Nauka, Novosibirsk, 1992) [in Russian].

    MATH  Google Scholar 

  15. D. Butterworth and G. Hewitt, Two-Phase Flow and Heat Transfer (Oxford Univ. Press, Oxford, 1979; Energiya, Moscow, 1980).

  16. B. G. Ganchev, Cooling of Nuclear Reactor Elements with Flowing-Down Films (Energoatomizdat, Moscow, 1987) [in Russian].

    Google Scholar 

  17. G. I. Gimbutis, “Heat transfer in the flow of a liquid-metal film under gravity on a vertical wall,” J. Eng. Phys. Thermophys. 32, 115–119 (1977). https://doi.org/10.1007/BF00858492

    Article  Google Scholar 

  18. Handbook on Thermo-Hydraulic Calculation in Nuclear Energy Industry, Vol. 1: Thermo-Hydraulic Processes in Nuclear Power Installations, Ed. by P. L. Kirillov (IzdAt, Moscow, 2010) [in Russian].

    Google Scholar 

  19. E. V. Usov, A. A. Butov, G. A. Dugarov, I. G. Kudashov, S. I. Lezhnin, N. A. Mosunova, and N. A. Pribaturin, “System of closing relations of a two-fluid model for the HYDRA-IBRAE/LM/V1 code for calculation of sodium boiling in channels of power equipment,” Therm. Eng. 64, 504–510 (2017). https://doi.org/10.1134/S0040601517070102

    Article  Google Scholar 

  20. M. Ishii and K. Mishima, “Droplet entrainment correlation in annular two-phase flow,” Int. J. Heat Mass Transfer. 32, 1835–1846 (1989). https://doi.org/10.1016/0017-9310(89)90155-5

    Article  Google Scholar 

  21. I. Kataoka and M. Ishii, “Entrainment and deposition rates of droplets in annular two-phase flow,” in Proc. ASME/JSME Thermal Engineering Joint Conf., Honolulu, HI, Mar. 20, 1983 (Am. Soc. Mech. Eng., New York, 1983), Vol. 1.

  22. R. Clift and W. H. Gauvin, “Motion of entrained particles gas streams,” Can. J. Chem. Eng. 49, 439–448 (1971).

    Article  Google Scholar 

  23. A. V. Lykov, Theory of Thermal Conductivity (Vysshaya Shkola, Moscow, 1967) [in Russian].

    Google Scholar 

  24. F. Kreith and W. Black, Basic Heat Transfer (Harper & Row, New York, 1980; Mir, Moscow, 1983).

  25. S. Whitaker, “Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles,” AIChE J. 18, 361–371 (1972).

    Article  Google Scholar 

  26. V. N. Piskunov, Dynamics of Aerosols (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Usov.

Additional information

Translated by V. Filatov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butov, A.A., Zhdanov, V.S., Klimonov, I.A. et al. The EUCLID/V2 Code Physical Models for Calculating Fuel Rod and Core Failures in a Liquid Metal Cooled Reactor. Therm. Eng. 66, 293–301 (2019). https://doi.org/10.1134/S0040601519050021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601519050021

Keywords:

Navigation