Skip to main content
Log in

The EUCLID/V1 Integrated Code for Safety Assessment of Liquid Metal Cooled Fast Reactors. Part 2: Validation and Verification

  • Nuclear Power Plants
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

The article presents information on the validation and verification (V&V) of the first version (V1) of the EUCLID integrated code intended for safety analysis of operating or designed liquid metal (sodium, lead, or lead–bismuth) cooled reactors under normal operation and under anticipated operational occurrences by carrying out interconnected neutronics, thermal–mechanical, and thermal–hydraulic calculations. The list of processes and phenomena that have to be modeled in the integral code for correctly describing the above-mentioned operating conditions is given. Based on this list, the most high-quality experimental data are selected for carrying out the validation. It is shown that, for sodium cooled reactors, a significant number of experiments was carried out around the world on studying individual thermal–hydraulic processes and phenomena, which made it possible to perform validation of the thermal–hydraulic module. The validation of the code—as applied to description of processes that take place in fuel rods with oxide or nitride fuel and gas gap—is carried out against the results of post-pile investigations of fuel rods irradiated in fast sodium cooled research and power-generating reactors. The obtained results opened up the possibility to determine the errors of calculating such fuel rod parameters as release of gaseous fission products from the fuel and sizes of pellet and cladding in a limited range of burnup values. To perform validation of the neutronics module as applied to calculation of such parameters as power density distribution over the core and decay heat release, a sufficient number of experiments and benchmarks were selected. The results obtained from experimental operating conditions of a BN-600 reactor and startup conditions of a BN-800 reactor made it possible to estimate how correctly the integral code performs calculations of interconnected thermal–hydraulic and neutronic processes. Only a limited set of experimental investigations is available for heavy liquid metal cooled reactors. In view of this circumstance, programs for obtaining the lacking data are developed. To estimate the quality with which the experiments are modeled by means of the EUCLID/V1 integrated code, a procedure for evaluating the errors of calculation results is developed. In accordance with this procedure, the error of calculating the parameters playing the main role in the reactor safety assessment is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. White Book of Nuclear Power Generation, Ed. by E. O. Adamov (NIKIET, Moscow, 2001) [in Russian].

    Google Scholar 

  2. P. N. Alekseev, V. G. Asmolov, A. Yu. Gagarinskii, N. E. Kukharkin, Yu. M. Semchenkov, V. A. Sidorenko, S. A. Subbotin, V. F. Tsibul’skii, and Ya. I. Shtrombakh, “On a nuclear power strategy of Russia to 2050,” At. Energy 111, 239–251 (2011).

    Article  Google Scholar 

  3. L. A. Bol’shov, N. A. Mosunova, V. F. Strizhov, and O. V. Shmidt, “Dedicated to the 60th anniversary of the journal Atomnaya Energiya: Next generation design codes for a new technological platform for nuclear power,” At. Energy 120, 369–379 (2016).

    Article  Google Scholar 

  4. A. V. Avvakumov, V. M. Alipchenkov, A. A. Belov, V. P. Bereznev, A. V. Boldyrev, N. A. Grushin, I. N. Khanbikov, I. A. Klimonov, P. V. Kolobaeva, D. A. Koltashev, N. A. Mosunova, V. D. Ozrin, N.A.Rtishchev, E. F. Seleznev, M. M. Semenova, A. A. Stakhanova, V. F. Strizhov, V. I. Tarasov, E. V. Usov, D. P. Veprev, V. A. Veretentsev, D. A. Afremov, A. V. Kudryavtsev, A. A. Semchenkov, S. L. Osipov, A. M. Anfimov, and V. S. Gorbunov, “Coupled calculations for the fast reactors safety justification with the EUCLID/V1 integrated computer code,” in Proc. Int. Conf. on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development (FR17), Yekaterinburg, Russia, June 26–29, 2017, paper no. IAEA-CN245-184.

    Google Scholar 

  5. N. A. Mosunova, “The EUCLID/V1 integrated code for safety assessment of liquid metal cooled fast reactors. Part 1: Basic models,” Therm. Eng. 65, 69–84 (2018). doi 10.1134/S0040601518050063

    Article  Google Scholar 

  6. RD-03-34-2000. Requirements to the Contents of a Report on Verification and Substantiation of Software Solutions Used for Safety Substantiation of Nuclear Power Objects, Put in Action by Order No. 122 of Gosatomnadzor Rossii of December 28, 2000.

  7. O. D. Kazachkovskii, G. K. Antipin, V. A. Afanas’ev, V. F. Bai, V. A. Borisyuk, E. V. Borisyuk, V. M. Gryazev, V. N. Efimov, V. P. Kevrolev, V. I. Kondrat’ev, N. V. Krasnoyarov, and A. M. Smirnov, “Emergency cool-down of BOR-60 unit,” At. Energ. 34, 341–344 (1973).

    Article  Google Scholar 

  8. I. A. Klimonov, E. V. Usov, G. A. Dugarov, A. A. Butov, I. G. Kudashov, E. N. Ivanov, N. A. Mosunova, V. F. Strizhov, A. M. Anfimov, V. S. Gorbunov, D. V. Kuznetsov, S. L. Osipov, and A. I. Bel’tyukov, “HYDRA-IBRAE/LM/V1 thermohydraulic code verification based on BN-600 experiments,” At. Energy 122, 258–262 (2017).

    Article  Google Scholar 

  9. V. N. Fromzel’, L. V. Fromzel’, and N. V. Vdovets, “The method for determining effective heat conductivity of fuel rod assembly and calculation of temperature field in assemblies placed in vertical containers,” in Processes of Heat and Mass Transfer and Hydrodynamics in Safety Systems of NPPs with VVER-640: Collection of Papers (Tsentr. Kotlo-Turbinnyi Inst., St. Petersburg, 1997), pp. 139–150 [in Russian].

    Google Scholar 

  10. Yu. A. Zeigarnik and V. D. Litvinov, “The study of hydraulic resistance during sodium boiling in a pipe,” Teplofiz. Vys. Temp., No. 5, 1116–1118 (1977).

    Google Scholar 

  11. Yu. A. Zeigarnik and V. D. Litvinov, “Experimental study of heat transfer and pressure losses during sodium boiling in a vertical pipe,” in Proc.5th Conf. on Heat and Mass Transfer, Minsk, 1975, Vol. 3, Part 1, pp. 147–156.

    Google Scholar 

  12. H. Kottowski and C. Savatteri, “Fundamentals of liquid metal boiling thermohydraulics,” Nucl. Eng. Des. 82, 281–304 (1984).

    Article  Google Scholar 

  13. D. N. Wall and A. A. Cooper, “An analysis of the pressure drop and dryout results from the second ISPRA 12-pin gridded cluster,” in Proc. 12th Liquid Metal Boiling Working Group (LMBWG), Ispra, Italy, 15–17 October 1986 (1987), pp. 191–220.

    Google Scholar 

  14. C. Savatteri, R. Warnsing, and H. Kottowski, “Twophase flow pressure drop of boiling sodium in grid and wire-spaced bundles,” in Proc. 13th Liquid Metal Boiling Working Group (LMBWG), Winfrith, UK, Sept. 27–29, 1988 (1989), pp. 99–120.

    Google Scholar 

  15. H. M. Kottowski, C. Savatteri, and W. Hufschmidt, “A new critical heat flux correlation for boiling liquid metals,” Nucl. Sci. Eng. 108, 396–413 (1991).

    Article  Google Scholar 

  16. Y. Kikuchi and K. Haga, “Sodium boiling experiments in a 19-pin bundle under loss-of-flow conditions,” Nucl. Eng. Des. 66, 357–366 (1981).

    Article  Google Scholar 

  17. A. Kaiser and W. Peppler, Sodium Boiling Experiments in an Annular Test Section under Flow Rundown Conditions, Report KFK-2389 (1977).

    Google Scholar 

  18. J. Aberle, A. J. Brook, and W. Peppler, Sodium Boiling Experiments in a 7-Pin Bundle under Flow Rundown Conditions, Report KFK-2378 (1976).

    Google Scholar 

  19. M. H. Fontana, R. E. MacPherson, P. A. Gnadt, L. F. Parsly, and J. L. Wantland, Temperature Distribution in a 19-Rod Simulated LMFBR Fuel Assembly in a Hexagonal Duct Fuel Failure Mockup Bundle 2a) — Record of Experimental Data, ORNL-TM-4113 (Oak Ridge National Lab., Oak Ridge, TN, 1973).

    Google Scholar 

  20. N. Hanus, W. R. Nelson, N. E. Clapp, M. H. Fontana, P. A. Gnadt, R. H. Thornton, and J. L. Wantland, Steady-State Sodium Tests in a 19-Pin Internally Guard-Heated Simulated LMFBR Fuel Assembly with a Six-Channel Internal Blockage-Record of Experimental Data for THORS Bundle 3C, ORNL-TM-6498 Oak Ridge National Lab., Oak Ridge, TN, 1979).

    Google Scholar 

  21. J. L. Wantland, N. E. Clapp, M. H. Fontana, P. A. Gnadt, and N. Hanus, “Dynamic boiling tests in a 19-pin simulated LMFBR fuel assembly,” in Proc. ANS Winter Meeting, San Francisco, CA, 1977 (American Nuclear Society, La Grange Park, IL,1977); Report No. CONF-771109–77.

    Google Scholar 

  22. C. W. Choi and K. S. Ha, “Validation of the finned sodium–air heat exchanger model in MARS-LMR,” Ann. Nucl. Eng. 94, 213–222 (2016).

    Article  Google Scholar 

  23. http://www.mscsoftware.ru/products/marc.

  24. BN-600 Hybrid Core Benchmark Analysis, IAEA Technical Document No. IAEA-TECDOC-1623 (2010). ISBN 978-92-0-109409-4. ISSN 1011–4289.

  25. BN-600 MOX Core Benchmark Analysis, IAEA Technical Document No. IAEA-TECDOC-1700 (2013). ISBN 978-92-0-139210-7. ISSN 1011–4289.

  26. M. N. Zizin, L. K. Shishkov, and L. N. Yaroslavtseva, Test Neutron-Physical Calculation of Nuclear Reactors Atomizdat, Moscow, 1980) [in Russian].

    Google Scholar 

  27. Benchmark Analysies on the Control Rod Withdrawal Tests Performed during the PHÉNIX End-of-Life Experiments, IAEA Technical Document No. IAEA-TECDOC-1742 (2014). ISBN 978-92-0-105314-5. ISSN 1011–4289.

  28. Evaluation of Benchmark Calculations on a Fast Power Reactor Core with Near Zero Sodium Effect, IAEA Technical Document No. IAEA-TECDOC-731 (1994).

  29. “Japan’s experimental fast reactor JOYO MK-I core: Sodium-cooled uranium-plutonium mixed oxide fueled fast core surrounded by UO2 blanket,” in Int. Handbook of Evaluated Reactor Physics. Benchmark Experiments, March 2009 ed. (Organization for Economic Cooperation and Development. Nuclear Energy Agency, 2009).

  30. Y. Komano, T. Takeda, and T. Sekiya, Improved Few-Group Coarse-Mesh Method for Calculating Three-Dimensional Power Distributions in Fast Breeder Reactor Report No. NEA/NEACRP/L/204 (Nuclear Energy Agency, 1978).

    Google Scholar 

  31. A. Hebert, “A Raviart–Thomas–Schneider solution of the diffusion equation in hexagonal geometry,” Ann. Nucl. Eng. 35, 363–376 (2008).

    Article  Google Scholar 

  32. “JNDC nuclear data library of fission products. Second version,” JAERY 1320 (1990).

  33. O. W. Hermann and R. M. Westfall, “ORIGEN-S: SCALE system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and Association source terms,” NUREG/CR-0200, Revision 4, Vol. 2, Section F7 (1995).

    Google Scholar 

  34. V. M. Kolobashkin, P. M. Rubtsov, P. A. Ruzhanskii, and V. V. Sidorenko, Radiation Characteristics of Irradiated Nuclear Fuel Energoatomizdat, Moscow, 1983) [in Russian].

    Google Scholar 

  35. J. L. Yarnell and P. J. Bendt, “Calorimetric fission product decay heat measurements for 239Pu, 233U, and 235U,” NUREG/CR-0349, LA-7452-MS, Informal report, R-3 (1978).

    Google Scholar 

  36. J. L. Yarnell and P. J. Bendt, “Decay heat from products of 235U thermal fission by fast-response boil-off calorimetry,” LA-NUREG-6713, NRC-3 (1977).

    Google Scholar 

  37. J. K. Dickens, T. A. Love, J. W. McConnell, and R. W. Peelle, “Fission-product energy release for times following thermal-neutron fission of 235U between 2 and 14000 s,” Nucl. Sci. Eng. 74,106–129 (1980).

    Google Scholar 

  38. J. K. Dickens, T. A. Love, J. W. McConnell, and R. W. Peelle, “Fission-product energy release for times following thermal-neutron fission of 239Pu and 241Pu between 2 and 14000 s,” Nucl. Sci. Eng. 78, 126–146 (1981).

    Article  Google Scholar 

  39. K. Baumung, “Measurements of 235U fission-product decay heat between 15 s and 4000 s,” KFK-3262 (Kernforschungszentrum Karlsruhe, 1981).

    Google Scholar 

  40. Yu. S. Khomyakov, Candidate’s Dissertation in Physics and Mathematics I.I. Leypunsky Inst. of Physics and Power Engineering, Obninsk, 1994).

    Google Scholar 

  41. “OECD/NEA Benchmarking of thermal-hydraulic loop models for lead-alloycooled advanced nuclear energy systems. Phase 1: Isothermal forced convection case,” NEA/NSC/WPFC/DOC(2012)17 (2012).

  42. W. Ma, A. Karbojian, B. R. Sehgal, and T.-N. Dinh, “Thermal-hydraulic performance of heavy liquid metal in straight-tube and Utube heat exchangers,” Nucl. Eng. Des. 239,1323–1330 (2009).

    Google Scholar 

  43. W. Ma, A. Karbojian, T. Hollands, and M. K. Koch, “Experimental and numerical study on lead-bismuth heat transfer in a fuel rod simulator,” J. Nucl. Mater. 415, 415–424 (2011).

    Article  Google Scholar 

  44. W. Ma, E. Bubelis, A. Karbojian, B. R. Sehgal, and P. Coddington, “Transient experiments from the thermal-hydraulic ADS lead bismuth loop (TALL) and comparative TRAC/AAA analysis,” Nucl. Eng. Des. 236, 1422–1444 (2006).

    Article  Google Scholar 

  45. W. Ma, E. Bubelis, A. Karbojian, and B. R. Sehgal, “Experimental study on natural circulation and its stability in heavy liquid metal loop,” Nucl. Eng. Des. 237, 1838–1847 (2007).

    Article  Google Scholar 

  46. A. Ciampichetti, D. Pellini, P. Agostiny, G. Benamati, N. Forgione, and F. Oriolo, “Experimental and computational investigation of LBE — Water interaction in LIFUS 5 facility,” Nucl. Eng. Des. 239, 2468–2478 (2009).

    Article  Google Scholar 

  47. P. D. Lobanov, E. V. Usov, A. A. Butov, N. A. Pribaturin, N. A. Mosunova, V. F. Strizhov, V. I. Chukhno, and A. E. Kutlimetov, “Experimental investigation of the impulse gas injection into liquid and the use of experimental data for verification of the HYDRAIBRAE/LM thermohydraulic code,” Therm. Eng. 64, 770–776 (2017). doi 10.1134/S004060151710007X

    Article  Google Scholar 

  48. J. Pacio, M. Daubner, F. Fellmoser, K. Litfin, L. Marocco, R. Stieglitz, S. Taufall, and T. Wetzel, “Heavy-liquid metal heat transfer experiment in a 19-rod bundle with grid spacers,” Nucl. Eng. Des. 273, 33–46 (2014).

    Article  Google Scholar 

  49. N. I. Alekseev, S. N. Bol’shagin, E. A. Gomin, S. S. Gorodkov, M. I. Gurevich, M. A. Kalugin, A. S. Kulakov, S. V. Marin, A. P. Novosel’tsev, D. S. Oleinik, A. V. Pryanichnikov, E. A. Sukhino-Khomenko, D. A. Shkarovskii, and M. S. Yudkevich, “The status of MCU-5,” Vopr. At. Nauki Tekh. Ser.: Fiz. Yad. Reaktorov, No. 4, 4–23 (2011).

    Google Scholar 

  50. “Best estimate safety analysis for nuclear power plants: Uncertainty evaluation,” Safety Reports Series, Vol. 52 (IAEA, Vienna, 2008).

  51. H. Glaeser, “GRS method for uncertainty and sensitivity evaluation of code results and applications,” Sci. Technol. Nucl. Install. 2008, 798901 (2008). doi 10.1155/2008/798901

    Google Scholar 

  52. W. L. Oberkampf and C. J. Roy, Verification and Validation in Scientific Computing Cambridge Univ. Press, Cambridge, 2010).

    Book  MATH  Google Scholar 

  53. D. P. Veprev, A. V. Boldyrev, S. Yu. Chernov, and N. A. Mosunova, “Development and validation of the BERKUT fuel rod module of the EUCLID/V1 integrated computer code,” Ann. Nucl. Energy 113, 237–245 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Mosunova.

Additional information

Original Russian Text © V.M. Alipchenkov, A.V. Boldyrev, D.P. Veprev, Yu.A. Zeigarnik, P.V. Kolobaeva, E.V. Moiseenko, N.A. Mosunova, E.F. Seleznev, V.F. Strizhov, E.V. Usov, S.L. Osipov, V.S. Gorbunov, D.A. Afremov, A.A. Semchenkov, 2018, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alipchenkov, V.M., Boldyrev, A.V., Veprev, D.P. et al. The EUCLID/V1 Integrated Code for Safety Assessment of Liquid Metal Cooled Fast Reactors. Part 2: Validation and Verification. Therm. Eng. 65, 627–640 (2018). https://doi.org/10.1134/S004060151809001X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004060151809001X

Keywords

Navigation