Skip to main content

Advertisement

Log in

A Review of Technologies for Multistage Wood Biomass Gasification

  • Energy Saving, New and Renewable Energy Sources
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

Currently, small-scale distributed power generation is being intensively developed in Russia and abroad. Given the rise in the rates for the electric and thermal energy, the development of new territories, and the technical infeasible connection to the power supply system, one of the most promising variants of supplying isolated consumers with power is the application of wood biomass gasification technologies. Analysis of the studies in this sphere shows that considerable attention is paid to enhancing the gasification efficiency and ensuring the purity of the gas. These problems are solved using multistage gasification technology. This technology involves the pyrolysis and gasification in separated zones of the gasifier or individual interconnected reactors, which enables achieving the optimal conditions for the conversion of biomass at every separate stage. The major advantage of multistage gasifiers is the production of synthesis gas with a low content of tar. The article represents a review of technologies for multistage wood biomass gasification and comparison of the relevant gasifiers of various types; the basic single-stage and multistage wood biomass gasification technologies are examined and their technical characteristics and examples of their commercial implementation are provided. Analysis of the current situation shows that predominantly foreign multistage wood biomass gasification technologies/plants have found practical application. These technologies allow the produced syngas to be directly used in internal combustion engines and gas turbines without employing expensive auxiliary detarring plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Belkin and A. V. Dubova, “Energy efficiency. An example that deserves attention,” Energetik, No. 4, 13–17 (2016).

    Google Scholar 

  2. The Power Generation Strategy of Russia for the Period until 2030. https://doi.org/minenergo.gov.ru/node/1026

  3. N. G. Lyubimova, “The defenition of ‘distributed energy’,” Vestn. Univ., No. 5, 103–105 (2014).

    Google Scholar 

  4. V. A. Gusarov and V. V. Kharchenko, “The prospects of distributed energy,” Innovatsii Sel’sk. Khoz., No. 1, 4–11 (2014).

    Google Scholar 

  5. P. A. Shchinnikov and D. S. Sinel’nikov, “Power supply in the low-rise construction in the lack of infrastructure,” Izv. Vyssh. Uchebn. Zaved. Stroit., No. 7, 58–63 (2015).

    Google Scholar 

  6. Ya. V. Tarlakov, Candidate’s Dissertation in Engineering (Moscow State Forest Univ., Moscow, 2013).

    Google Scholar 

  7. D. A. Novosel’tsev, I. K. Shumakov, and V. V. Zhil’tsov, “On the use of import-substituting low-power gas turbines for modernization of the small-scale energy industry of the Northern regions,” Din. Sist., Mekh. Mash., No. 1, 328–331 (2014).

    Google Scholar 

  8. A. N. Kuz’min, E. Yu. Mikheeva, N. V. Pavlov, and A. E. Ivanov, “Prospects of the development of the small-scale heat distribution industry in the regions of Sakha Republic (Yakutia) until 2030,” Energosberezhenie Vodopodgot., No. 2, 18–21 (2012).

    Google Scholar 

  9. A. T. Liin, N. K. Malinin, and T. A. Shestopalova, “Efficiency study of the use of solar photoenergy plants in distributed power generation systems in the regions of Myanmar,” Energetik, No. 5, 36–40 (2014).

    Google Scholar 

  10. A. S. Sel’nitsyn and Yu. V. Lyasnikova, “Economical problems of the development of solar power generation,” in Economical Aspects of Technological Development of Modern Industry: Proc. Int. Sci.-Pract. Conf., Moscow, 2016, pp. 201–206.

  11. A. V. Bastron, V. A. Tremyasov, N. V. Tsuglenok, and A. V. Chebodaev, Wind Power Generation Industry of Krasnoyarsk Krai (Krasnoyarsk. Gos. Agrar. Univ., Krasnoyarsk, 2015) [in Russian].

    Google Scholar 

  12. E. V. Alekhina, “The prospects of wind power generation,” Izv. Tul’sk. Gos. Univ. Tekh. Nauki., No. 12–2, 13–17 (2013).

    Google Scholar 

  13. Yu. L. Vengerov, V. V. Butylin, and D. N. Rodionov, “Possibility of using fuel elements in energy systems,” Integral, No. 1, 38–41 (2014).

    Google Scholar 

  14. M. I. Dli, A. A. Balyabina, and N. V. Drozdova, “Hydrogen power generation and prospects of its development,” Al’tern. Energ. Ekol., No. 22, 37–41 (2015).

    Google Scholar 

  15. A. V. Kazakov, A. S. Zavorin, P. Yu. Novosel’tsev, and R. B. Tabakaev, “Cogeneration power plant with fuel element on the basis of in-cycle conversion of organic fuel for autonomous energy supply,” Izv. Tomsk. politekhn. Univ. Inzh. Georesur. 324 (4), 54–61 (2014).

    Google Scholar 

  16. V. M. Zaichenko, “Autonomous power generation complexes that use local fuel-energy sources,” Energosberezhenie, No. 2, 67–71 (2014).

    Google Scholar 

  17. I. A. Sultanguzin, A. V. Fedyukhin, S. Yu. Kurzanov, A.M. Gyulmaliev, T. A. Stepanova, V. A. Tumanovsky, and D. P. Titov, “Prospects for the development of independent power supply systems on the basis of solid fuel thermal conversion technology,” Therm. Eng. 62, 359–364 (2015). doi 10.1134/S0040601515050110

    Article  Google Scholar 

  18. Housing Services in Russia. 2016. Statistics (Rosstat, Moscow, 2016).

  19. D. V. Tuntsev, R. G. Khismatov, M. R. Khairullina, A. S. Savel’ev, and I. S. Romancheva, “Processing of low-quality wood into coal using the PU-10 installation,” Aktual. Napravleniya Nauchn. Issled. XXI Veka: Teor. Prakt. 3, 459–463 (2015).

    Google Scholar 

  20. Biomass Conversion Processes for Energy and Fuels, Ed. by S. S. Sofer and O. R. Zaborsky (Plenum, New York, 1984; Mir, Moscow, 1985).

  21. P. McKendry, “Energy production from biomass. Part 3: Gasification technologies,” Bioresour. Technol. 83, 55–63 (2002).

    Article  Google Scholar 

  22. S. Heidenreich and P. U. Foscolo, “New concepts in biomass gasification,” Prog. Energy Combust. Sci. 46, 72–95 (2015).

    Article  Google Scholar 

  23. Y. Richardson, M. Drobek, A. Julbe, J. Blin, and F. Pinta, “Biomass gasification to produce syngas,” in Recent Advances in Thermo-Chemical Conversion of Biomass (Elsevier, Amsterdam, 2015), Ch. 8, pp. 213–250.

    Chapter  Google Scholar 

  24. M. Gadek, R. Kubica, and E. Jedrysik, “Production of methanol and dimethyl ether from biomass derived syngas — A comparison of the different synthesis pathways by means of flowsheet simulation,” Comput. Aided Chem. Eng. 32, 55–60 (2013).

    Article  Google Scholar 

  25. B. Buragohain, P. Mahanta, and V. S. Moholkar, “Biomass gasification for decentralized power generation: The Indian perspective,” Renewable Sustainable Energy Rev. 14, 73–92 (2010).

    Article  Google Scholar 

  26. A. Perna, M. Minutillo, S. P. Cicconardi, E. Jannelli, and S. Scarfogliero, “Conventional and advanced biomass gasification power plants designed for cogeneration purpose,” Energy Procedia 82, 687–694 (2015).

    Article  Google Scholar 

  27. A. V. Bridgwater, “The technical and economic feasibility of biomass gasification for power generation,” Fuel 74, 631–653 (1995).

    Article  Google Scholar 

  28. G. Schuster, G. Löffler, K. Weigl, and H. Hofbauer, “Biomass steam gasification—An extensive parametric modeling study,” Bioresour. Technol. 77, 71–79 (2001).

    Article  Google Scholar 

  29. D. A. Svishchev, A. N. Kozlov, I. G. Donskoy, and A. F. Ryzhkov, “A semi empirical approach to the thermodynamic analysis of downdraft gasification,” Fuel 168, 91–106 (2016).

    Article  Google Scholar 

  30. T. K. Patra and P. N. Sheth, “Biomass gasification models for downdraft gasifier: A state-of-the-art review,” Renewable Sustainable Energy Rev. 50, 583–593 (2015).

    Article  Google Scholar 

  31. A. Anukama, S. Mamphwelia, P. Reddyc, E. Meyera, and O. Okohb, “Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review,” Renewable Sustainable Energy Rev. 66, 775–801 (2016).

    Article  Google Scholar 

  32. V. V. Kopytov, “Solid fuels gasification: Retrospective, current status and development prospects,” Al’tern. Energ. Ekol., No. 6, 29–78 (2011).

    Google Scholar 

  33. R. Toonssen, N. Woudstra, and A. H. M. Verkooijen, “Decentralized generation of electricity with solid oxide fuel cells from centrally converted biomass,” Int. J. Hydrogen Energy 35, 7594–7607 (2010).

    Article  Google Scholar 

  34. A. Kler, E. Tyurina, and A. Mednikov, “Energy-technology installations for combined production of hydrogen and electricity with CO2 removal systems,” Int. J. Hydrogen Energy 36, 1230–1235 (2011).

    Article  Google Scholar 

  35. T. Bui, R. Loof, and S. C. Bhattacharya, “Multi-stage reactor for thermal gasification of wood,” Energy 19, 397–404 (1994).

    Article  Google Scholar 

  36. P. Basu, Biomass Gasification, Pyrolysis and Torrefaction. Practical Design and Theory, 2nd ed. (Elsevier, Amsterdam, 2013).

    Google Scholar 

  37. R. G. Jenkins, “Thermal gasification of biomass—A primer,” in Bioenergy: Biomass to Biofuels, ed. by A. Dahiya (Elsevier, Amsterdam, 2015), Ch. 16, pp. 281–286. doi 10.1016/B978-0-12-407909-0.00016-X

    Google Scholar 

  38. D. L. Rakhmankulov, F. Sh. Vil’danov, F. N. Latypova, R. R. Chanyshev, and R. F. Ishbulatov, “Modern methods of biomass gasification,” Bashkir. Khim. Zh. 17 (2), 36–42 (2010).

    Google Scholar 

  39. A. V. Fedyukhin, Candidate’s Dissertation in Engineering (Moscow Power Engineering Inst., Moscow, 2014).

    Google Scholar 

  40. D. S. Gunarathne, Doctoral Dissertation (KTH Royal Inst. of Technology, Stockholm, Sweden, 2016). https://doi.org/kth.diva-portal.org/smash/get/diva2:953814/FULLTEXT01.pdf

    Google Scholar 

  41. P.-C. Kuo, W. Wu, and W.-H. Chen, “Gasification performances of raw and torrefied biomass in a downdraft fixed bed gasifier using thermodynamic analysis,” Fuel B 117, 1231–1241 (2014).

    Article  Google Scholar 

  42. A. Z. Mendiburu, J. A. Carvalho, and C. J. R. Coronado, “Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models,” Energy 66, 189–201 (2014).

    Article  Google Scholar 

  43. N. P. Pérez, E. B. Machin, D. T. Pedroso, J. S. Antunes, and J. L. Silveira, “Fluid-dynamic assessment of sugarcane bagasse to use as feedstock in bubbling fluidized bed gasifiers,” Appl. Therm. Eng. 73, 238–244 (2014).

    Article  Google Scholar 

  44. X. Xiao, D. D. Le, K. Morishita, S. Zhang, L. Li, and T. Takarada, “Multi-stage biomass gasification in Internally Circulating Fluidized-bed Gasifier (ICFG): Test operation of animal-waste-derived biomass and parametric investigation at low temperature,” Fuel Process. Technol. 91, 895–902 (2010).

    Article  Google Scholar 

  45. J. S. Schneider, C. Grube, A. Herrmann, and S. Rönsch, “Atmospheric entrained-flow gasification of biomass and lignite for decentralized applications,” Fuel Process. Technol. 152, 72–82 (2016).

    Article  Google Scholar 

  46. X. Gao, Y. Zhang, B. Li, and X. Yu, “Model development for biomass gasification in an entrained flow gasifier using intrinsic reaction rate submodel,” Energy Convers. Manage. 108, 120–131 (2016).

    Article  Google Scholar 

  47. K. Qin, W. Lin, P. A. Jensen, and A. D. Jensen, “Hightemperature entrained flow gasification of biomass,” Fuel 93, 589–600 (2012).

    Article  Google Scholar 

  48. J. Ahrenfeldt, T. P. Thomsen, U. Henriksen, and L. R. Clausen, “Biomass gasification cogeneration— A review of state of the art technology and near future perspectives,” Appl. Therm. Eng. 50, 1407–1417 (2013).

    Article  Google Scholar 

  49. F. Lettner, H. Timmerer, and P. Haselbacher, “Biomass gasification—State of the art description,” in Gasification Guide (Graz, Austria, 2007).

    Google Scholar 

  50. M. Asadullah, “Barriers of commercial power generation using biomass gasification gas: A review,” Renewable Sustainable Energy Rev. 29, 201–215 (2014).

    Article  Google Scholar 

  51. M. Asadullah, “Biomass gasification gas cleaning for downstream applications: A comparative critical review,” Renewable Sustainable Energy Rev. 40, 118–132 (2014).

    Article  Google Scholar 

  52. D. J. Sweeney, Doctoral Dissertation (Univ. of Utah, Salt Lake City, UT, 2012).

    Google Scholar 

  53. Q. Ke, J. P. Arendt, W. Lin, and A. D. Jensen, “Biomass gasification behavior in an entrained flow reactor: Gas product distribution and soot formation,” Energy Fuels 26, 5992–6002 (2012).

    Article  Google Scholar 

  54. R. N. Singh, S. P. Singh, and J. B. Balwanshi, “Tar removal from producer gas: A review,” Res. J. Eng. Sci. 3 (10), 16–22 (2014).

    Google Scholar 

  55. D. J. F. Cano, Ph.D. Thesis (Univ. de Sevilla, Sevilla, 2013). https://doi.org/grupo.us.es/bioenergia/pdf/tesis/Thesis%20Diego%20Fuentes_1.pdf

  56. V. Narayan, P. A. Jensen, U. B. Henriksen, H. Egsgaard, R. G. Nielsen, and P. Glarborg, “Behavior of alkali metals and ash in a low-temperature circulating fluidized bed (LTCFB) gasifier,” Energy Fuels 30, 1050–1061 (2016).

    Article  Google Scholar 

  57. P. Donaj, M. Amovic, B. Moner, and K. Engvall, “Flexibility and robustness of WoodRoll system — Tests results from a 500 kW plant,” in Proc. 1st Int. Conf. on Renewable Energy Gas Technology (REGATEC 2014), Malmö, Sweden, May 10–11, 2016. https://doi.org/www.researchgate.net/publication/264740467_Flexibility_and_Robustness_of_WoodRoll_System_-_Tests_results_-from_a_500kW_plant

  58. LiPRO Energy GmbH & Co. KG. https://doi.org/www.liproenergy.de

  59. A. Surjosatyo, F. Vidian, and Yu. S. Nugroho, “A review on gasifier modification for tar reduction in biomass gasification,” J. Mek., No. 31, 62–77 (2011).

    Google Scholar 

  60. The Pyroneer Demonstration Plant. https://doi.org/www.pyroneer.com

  61. SynCraft Engineering GmbH. https://doi.org/www.syncraft.at

  62. Stadtwerke Rosenheim GmbH & Co. https://doi.org/www.swro.de

  63. BTG Biomass Technology Group. https://doi.org/www.btgworld.com

  64. I. G. Donskoi, “Mathematical modeling of the fixedbed solid fuels gasification with secondary air supply,” Gorenie Plazmokhim. 12, 376–382 (2013).

    Google Scholar 

  65. V. V. Kostyunin, V. N. Potapov, S. I. Chuvaev, A. N. Borozdin, I. V. Gordeev, and V. E. Ovtsyn, Patent RF No. 2469073C1, MPK, C10J 3/72, F23G 5/027 (2012).

  66. V. V. Kostyunin, V. N. Potapov, S. I. Chuvaev, A.V.Popov, A. N. Borozdin, I. V. Gordeev, V. E. Ovtsyn, and O. V. Shabanov, Patent RF 2293108, MPK, C10J 3/68 (2007).

  67. V. V. Kostyunin and V. N. Potapov, “The experience of creating vortex gas generators of a new type for processing complex fuels and biomass,” Sovrem. Nauka: Issled, Idei, Rezul’t., Tekhnol., No. 1, 82–88 (2014).

    Google Scholar 

  68. N. F. Timerbaev and R. G. Safin, “Installation for producing synthesis gas from wood waste,” Derevoobrab. Prom-st., No. 1, 21–22 (2012).

    Google Scholar 

  69. K. Artmann, R. Egeler, G. Kolbeck, C. Schmidt, W. Sewald, and R. Waller, Patent EP No. 2641958 A1 (2013). https://doi.org/worldwide.espacenet.com/publication-Details/biblio?CC=EP&NR=2641958A1&KC=A1&FT=D

  70. V. V. Kopytov, Gasification of Condensed Fuels: Retrospective, Current Status and Development Prospects (Infra-Inzheneriya, Moscow, 2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mednikov.

Additional information

Original Russian Text © A.S. Mednikov, 2018, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mednikov, A.S. A Review of Technologies for Multistage Wood Biomass Gasification. Therm. Eng. 65, 531–546 (2018). https://doi.org/10.1134/S0040601518080037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601518080037

Keywords