Estimation of Available Wave Energy in the Barents Sea


The purpose of this research is to estimate the energy potential of the Barents Sea based on numerical modeling of the wave energy over a long period of time from 1979 to 2010. Using the WaveWatchIII wave model, the wave energy flux in the open part and in the coastal zone of the Barents Sea has been calculated. The calculations are based on the data of the NCEP/CFSR reanalysis with spatial resolution of 0.3°. The calculations were performed on a unstructured grid, which has high spatial resolution at the shore (200–500 m). The long-term average annual significant wave height1 varies from 1.5–2.0 m for the open part of the Barents Sea to 1.0–1.5 m in the coastal zone of Murmansk oblast. The long-term average annual wave energy flux varies from 15–20 kW/m for the open part of the Barents Sea to 5–10 kW/m in the coastal zone of Murmansk region. The probability of exceedance of wave energy of more than 1 kW/m is 80–90% for the open part of the sea and 70–75% at the northeastern coast of the Rybachy Peninsula. To the east and west of the peninsula, this figure decreases significantly. Near the village of Teriberka, the probability of exceedance of the wave energy is 65–70%. The probability of exceedance of energy of more than 5 kW/m is 50–60% in the open sea and it does not exceed 35% in the coastal zone. The average probability of exceedance of the wave energy is subject to seasonal fluctuations. Thus, in the coastal zone, the probability of exceedance of energy of 1 kW/m is approximately 90% in the winter months and it does not exceed 50% in summer. The obtained results can be applied to designing a wave power station in the Barents Sea.

This is a preview of subscription content, access via your institution.


  1. 1.

    O. Popel, B. Ermolenko, E. G. Ermolenko, others, Atlas of renewable energy resources of Russia. Scientific Publication, Eds. by S. V. Kiseleva, G. V. Ermolenko, O. S. Popel (Mendeleev University of Chemical Technology of Russia, Moscow, 2015).

  2. 2.

    Ocean Energy Technology Brief 4. Wave Energy Technology Brief June 2014 (IRENA, 2014).

  3. 3.

    A. A. Gorlov, “Scientific and experimental infrastructure of development of marine renewable energy sources,” Energiya: Ekon., Tekh., Ekol., No. 4, 21–31 (2017).

    Google Scholar 

  4. 4.

    Oceans of Energy. European Ocean Energy Roadmap 2010–2050 (Eur. Ocean Energy Ass., 2010).

  5. 5.

    H. Jeffrey and J. Sedgwick, ORECCA European Offshore Renewable Energy Roadmap (ORECCA Coordinated Action Project, 2011).

    Google Scholar 

  6. 6.

    “Overview of European innovation activities in marine energy technology,” Joint Research Centre Scientific and Policy Reports, Report No. EUR 26342 EN (2013).

  7. 7.

    A. A. Gorlov, “Wind wave power generation,” Energiya: Ekon., Tekh., Ekol., No. 2, 30–39 (2015).

    Google Scholar 

  8. 8.

    V. A. Minin and G. S. Dmitriev, Prospects of Development of Nontraditional and Renewable Energy Sources on Kola Peninsula (Bellona, Murmansk, 2007) [in Russian].

    Google Scholar 

  9. 9.

    F. Onea, A. Railean, and E. Rusu, “Evaluation of the wave energy potential in some locations where European offshore wind farms operate,” in Maritime Technology and Engineering 3 (CRC, London, 2016), Vol. 1.

  10. 10.

    B. V. Divinskii and R. D. Kos’yan, “The Black Sea and Sea of Azov wave regime: Results of numerical simulation,” Ekol. Bezop. Pribrezhn. &Shel’fovoi Zon Morya, No. 1, 14–21 (2016).

    Google Scholar 

  11. 11.

    Z. K. Abuzyarov, A. A. Lukin, and E. S. Nesterov, Wind Wave Regime, Diagnosis and Forecasting in Oceans and Seas: Scientific and Procedural Guide, Ed. by E. S. Nesterov (Gidrometeorol. Nauch.-Issled. Tsentr RF, Moscow, 2013) [in Russian].

  12. 12.

    S. A. Myslenkov, E. V. Stolyarova, M. Yu. Markina, and F. N. Gippius, “Comparison of the potential of the Black and Barents Seas,” in Proc. Sci. Conf. Renewable Energy Sources, Moscow, Oct. 10–13, 2016, (Mosk. Gos. Univ., Moscow, 2016), pp. 251–256.

    Google Scholar 

  13. 13.

    S. A. Myslenkov, V. S. Arkhipkin, P. K. Koltermann “Estimation of the height of swell in the White and Barents seas,” Vestnik Moskovskogo universiteta. Ser. 5, Geografija, no. 5, 59–66 (2015) [in Russian].

    Google Scholar 

  14. 14.

    G. Amirinia, B. Kamranzad, and S. Mafi, “Wind and wave energy potential in southern Caspian Sea using uncertainty analysis,” Energy 120, 332–345 (2017).

    Article  Google Scholar 

  15. 15.

    Spravochnye dannye po rezhimu vetra i volnenija Barenceva, Ohotskogo i Kaspijskogo morej, Reference data of wind and waves climate of the Barents, Okhotsk Sea and Caspian Sea (Rossijskij morskoj registr sudohodstva, St. Petersburg, 2003), 213 p. [in Russian].

  16. 16.

    V. S. Arkhipkin, A. G. Vas’kov, S. V. Kiseleva, S. A. Myslenkov, A. A. Temeev, S. A. Temeev, and P.M. Umnov, “Assessing the potential of wave energy in coastal waters of Crimea peninsula,” Al’tern. Energy Ekol., No. 20, 25–35 (2015).

    Google Scholar 

  17. 17.

    S. Gallagher, R. Tiron, E. Whelan, E. Gleeson, F. Dias, and R. McGrath, “The nearshore wind and wave energy potential of Ireland: A high resolution assessment of availability and accessibility,” Renewable Energy 88, 494–516 (2016).

    Article  Google Scholar 

  18. 18.

    H. L. Tolman, User Manual and System Documentation of WAVEWATCHIII Version 4.18, NOAA/NWS/NCEP/MMAB Technical Note (2014).

    Google Scholar 

  19. 19.

    R. L. Snyder, F. W. Dobson, J. A. Elliott, and R. B. Long, “Array measurements of atmospheric pressure fluctuations above surface gravity waves,” J. Fluid Mech. 102, 1–59 (1981).

    Article  Google Scholar 

  20. 20.

    G. J. Komen, S. Hasselmann, and K. Hasselmann, “On the existence of a fully developed wind-sea spectrum,” J. Phys. Oceanogr. 14, 1271–1285 (1984).

    Article  Google Scholar 

  21. 21.

    S. Hasselmann and K. Hasselmann, “Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: A new method for efficient computations of the exact nonlinear transfer integral,” J. Phys. Oceanogr. 15, 1369–1377 (1985).

    Article  Google Scholar 

  22. 22.

    K. Hasselmann, T. P. Barnett, E. Bouws, and H. Walden, “Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP),” Ergänzungsheft Dtsch. Hydrogr. Z. 8 (12), 7–94 (1995).

    Google Scholar 

  23. 23.

    S. Saha, S. Moorthi, H. Pan, and M. Goldberg, “The NCEP climate forecast system reanalysis,” Bull. Am. Meteorol. Soc. 91, 1015–1057 (2010).

    Article  Google Scholar 

  24. 24.

    GEBCO (General Bathymetric Chart of the Oceans).

  25. 25.

    Statistics Compilation. Population Size, Distribution, and Age and Sex Composition of Murmansk Oblast. The Results of the All-Russia Population Census (Federal’naya Sluzhba Gosudarstvennoi Statistiki, Territorial’nyi Organ Federal’noi Sluzhby Gosudarstvennoi Statistiki po Murmanskoi Oblasti, Murmansk, 2012), Vol. 1: 2012 [in Russian].

  26. 26.


  27. 27.

    EDS Group.

  28. 28.

    Ocean Rus Energy.

Download references

Author information



Corresponding author

Correspondence to S. A. Myslenkov.

Additional information

Original Russian Text © S.A. Myslenkov, M.Yu. Markina, S.V. Kiseleva, E.V. Stoliarova, V.S. Arkhipkin, P.M. Umnov, 2018, published in Teploenergetika.

The significant wave height is the mean value of the heights of one third of all highest waves.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Myslenkov, S.A., Markina, M.Y., Kiseleva, S.V. et al. Estimation of Available Wave Energy in the Barents Sea. Therm. Eng. 65, 411–419 (2018).

Download citation


  • wave energy
  • estimation of the energy potential
  • wave model
  • reanalysis
  • probability of exceedance of wave energy