Skip to main content
Log in

Low-temperature fuel cells: Outlook for application in energy storage systems and materials for their development

  • Energy Conservation, New, and Renewable Energy Sources
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

Low-temperature fuel cells (FCs) are perspective alternative energy sources. They cannot, however, be considered as a primary energy source, because no hydrogen in pure form, used in their operation, exists in nature. The development of devices to autonomously supply and store energy can be considered as one of the most promising applications of low-temperature FCs. In the latter case, the primary purpose is to compensate differences in peaks of producing and consuming energy both in the seasons and time of day. The first part of the review describes this problem. The second part involves analyzing nanomaterials used in FCs, so that hybrid membranes, including inorganic nanoparticles, are high priority in this regard. Their incorporation into the pores of the membranes leads to an improvement in transport properties in many cases, including an increase in ionic conductivity and selectivity of transport processes. These properties of the hybrid membranes are discussed by using a model of limited elasticity of walls of the pores. Catalysts, being platinum nano-size particles, play an important role in the FC. To reduce their costs and increase activity, some approaches, implying decrease in particle sizes or using two-component particles, for example, alloys and ‘core-shell’ particles, are used. In the latter case, platinum, localized on the surface, determines activity of the catalyst, whereas the second metal increases surface area and catalyst activity. The main reasons for changes in properties of the materials and effect of the catalyst support on electrochemical processes in FCs are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Girard, Principles of Environmental Chemistry (Burtlett, Burlington, USA, 2014, 3rd ed.; Fizmatlit, Moscow, 2008).

    Google Scholar 

  2. A. B. Yaroslavtsev, Yu. A. Dobrovol’skii, N. S. Shaglaeva, E. V. Gerasimova, and E. A. Sanginov, “Nanostructured material for low–temperature fuel cells,” Russ. Chem. Rev. 81 (3), 191–220 (2012).

    Article  Google Scholar 

  3. D. S. Scott and W. Hafele, “The coming hydrogen age: Preventing world climatic disruption,” Int. J. Hydrogen Energy 15 (10), 727–737 (1990).

    Article  Google Scholar 

  4. H. Tang, Z. Wan, M. Pan, and S. P. Jiang, “Self-assembled nafion–silica nanoparticles for elevated–high temperature polymer electrolyte membrane fuel cells,” Electrochem. Commun. 9 (8), 2003–2008 (2007).

    Article  Google Scholar 

  5. Fuel Cell Handbook (U. S. Depart. Energy, Morgantown, 2004), 7th ed.

  6. V. E. Fortov and O. S. Popel’, Energetics in Contemporary World (Intellekt, Dolgoprudnyi, 2011).

    Google Scholar 

  7. M. V. Gridasov, S. V. Kiseleva, L. V. Nefedova, O. S. Popel’, and S. E. Frid, “Development of the geoinformation system “Renewable sources of Russia”: Statement of the problem and choice of solution methods,” Therm. Eng. 58 (11), 924–931 (2011).

    Article  Google Scholar 

  8. P. Nema, R. K. Nema, and S. Rangnekar, “A current and future state of art development of hybrid energy system using wind and PV-solar: A review,” Renewable Sustainable Energy Rev. 13 (8), 2096–2103 (2009).

    Article  Google Scholar 

  9. O. S. Popel’, “Autonomous energy units on the renewable sources of energy,” Energosberezhenie, No. 3, 70–76 (2006).

    Google Scholar 

  10. V. M. Andreev, A. G. Zabrodskii, and S. O. Kognovitskii, “Integrated solar–wind energetic unit with hydrogen cycle based storage device,” Int. Sci. J. Altern. Energy Ecology (ISJAEE) 46 (2), 99–105 (2007).

    Google Scholar 

  11. P. W. Stackhouse, Surface Meteorology and Solar Energy, NASA Langley ASDC. http://eosweb.larc.nasa.gov/sse/

  12. O. S. Popel’, S. E. Frid, S. V. Kiseleva, Yu. G. Kolomiets, and N. V. Lisitskaya, Climate Data for Renewable Russia Energetics (MFTI, Moscow, 2010) [in Russian].

    Google Scholar 

  13. O. S. Popel’ and A. B. Tarasenko, “Modern kinds of electric energy storages and their application in independent and centralized power systems,” Therm. Eng. 58 (11), 883–893 (2011).

    Article  Google Scholar 

  14. O. S. Popel’ and A. B. Tarasenko, “The analysis of the effectiveness of using self-contained photovoltaic outdoor lighting systems under climatic conditions of Moscow and the south of Russia,” Therm. Eng. 59 (11), 824–830 (2012).

    Article  Google Scholar 

  15. A. Parasuraman, T. M. Lim, M. Menictas, “Skyllas-Kazacos, Review of material research and development for vanadium redox flow battery applications” Electrochim. Acta 101, 27–40 (2013).

    Article  Google Scholar 

  16. P. Millet, N. Mbemba, S. A. Grigoriev, and V. N. Fateev, “Electrochemical performances of PEM water electrolysis cells and perspectives,” Int. J. Hydrogen Energy 36 (6), 4134–4142 (2011).

    Article  Google Scholar 

  17. K. Sopian, M. Z. Ibrahim, W. R. W. Daud, M. Y. Othman, B. Yatim, and N. Amin, “Performance of a PV–wind hybrid system for hydrogen production,” Renew. Energy 34 (8), 1973–1978 (2009).

    Article  Google Scholar 

  18. M. Eroglu, E. Dursun, S. Sevencan, J. Song, S. Yazici, and O. Kilic, “A mobile renewable house using PV/wind/fuel cell hybrid power system,” Int. J. Hydrogen Energy 36 (13), 7985–7992 (2011).

    Article  Google Scholar 

  19. V. E. Fortov and O. S. Popel’, “The current status of the development of renewable energy sources worldwide and in Russia,” Therm. Eng., 61 (6), 389–398 (2014).

    Article  Google Scholar 

  20. S. P. Malyshenko, A. N. Gryaznov, and N. I. Filatov, “High-pressure H2/O2-steam generators and their possible applications,” Int. J. Hydrogen Energy 29 (6), 589–596 (2004).

    Article  Google Scholar 

  21. Alumo–Hydrogen Energetics, Ed. by A. E. Sheindlin, (OIVT RAN, Moscow, 2007) [in Russian].

    Google Scholar 

  22. B. Shabani, J. Andrews, and S. Watkins, “Energy and cost analysis of a solar–hydrogen combined heat and power system for remote power supply using a computer simulation,” Solar Energy 84 (1), 144–155 (2010).

    Article  Google Scholar 

  23. A. Khalilnejad and G. H. Riahy, “A hybrid wind–PV system performance investigation for the purpose of maximum hydrogen production and storage using advanced alkaline electrolyzer,” Energy Conver. Manag. 80, 398–406 (2014).

    Article  Google Scholar 

  24. A. K. Kaviani, G. H. Riahy, and Sh. M. Kouhsari, “Optimal design of a reliable hydrogen–based stand–alone wind/PV generating system, considering component outages,” Renew. Energy 34 (11), 2380–2390 (2009).

    Article  Google Scholar 

  25. N. A. Kelly, T. L. Gibson, and D. B. Ouwerkerk, “Generation of high–pressure hydrogen for fuel cell electric vehicles using photovoltaic–powered water electrolysis,” Int. J. Hydrogen Energy 36 (24), 15803–15825 (2011).

    Article  Google Scholar 

  26. R. Dufo-Lopez, J. L. Bernal-Agustin, and F. Mendoza, “Design and economical analysis of hybrid PV–wind systems connected to the grid for the intermittent production of hydrogen,” Energy Policy 37 (8), 3082–3095 (2009).

    Article  Google Scholar 

  27. D. Ghribi, A. Khelifa, S. Diaf, and M. Belhamel, “Study of hydrogen production system by using PV solar energy and PEM electrolyser in Algeria,” Int. J. Hydrogen Energy 38 (20), 8480–8490 (2013).

    Article  Google Scholar 

  28. A. Ursua, I. San Martin, E. L. Barrios, and P. Sanchis, “Stand–alone operation of an alkaline water electrolyser fed by wind and photovoltaic systems,” Int. J. Hydrogen Energy 38 (35), 14952–14967 (2013).

    Article  Google Scholar 

  29. J. L. Bernal–Agustin and R. Dufo–Lopez, “Hourly energy management for grid–connected wind–hydrogen systems,” Int. J. Hydrogen Energy 33 (22), 6401–6413 (2008).

    Article  Google Scholar 

  30. M. A. Kasatkin, “Technique for comparing the efficiency of power–generating units based on fuel cells with standard ones” Al’ternat. Energ. Ekolog. 26 (6), 68–73 (2005).

    Google Scholar 

  31. M. A. Kasatkin, “Who will buy Russian power units based on fuel cells?” Al’ternat. Energ. Ekolog. 26 (7), 66–71 (2005).

    Google Scholar 

  32. ND no. 2-139902-027. Collection of Normative–Methodical Materials, Ross. Morsk. Registr Sudokhod. Book. 22, (St. Petersburg, 2013) [in Russian].

  33. Handbook of Fuel Cells–Fundamentals, Technology and Applications, Eds. by W. Vielstich, H. A. Gasteiger, and A. Lamm, (Wiley, New York, 2003).

    Google Scholar 

  34. A. d’Epifanio, B. Mecher, E. Fabbri, A. Rainer, E. Traversa, and S. Licoccia, “Composite ormosil/Nafion membranes as electrolytes for direct methanol fuel cells,” J. Electrochem. Soc., B 154 (11), 1148–1151 (2007).

    Article  Google Scholar 

  35. K.-D. Kreuer, S.J. Paddison, E. Spohr, and M. Schuster, “Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology,” Chem. Rev. 104 (10), 4637–4678 (2004).

    Article  Google Scholar 

  36. A. B. Yaroslavtsev, T. L. Kulova, A. M. Skundin, and Yu. A. Dobrovol’skii, “Nanomaterials for alternative energetic,” in Nanomaterials: Properties and Perspective Applications, Ed. by A. B. Yaroslavtsev, (Nauchnyi Mir, Moscow, 2014) [in Russian].

    Google Scholar 

  37. A. Chandan, M. Hattenberger, A. El-Kharouf, S. Du, A. Dhir, V. Self, B.G. Pollet, A. Ingram, and W. Bujalski, “High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC): A review,” J. Power Sources 231, 264–278 (2013).

    Article  Google Scholar 

  38. M. P. Rodgers, L. J. Bonville, H. R. Kunz, D. K. Slattery, and J. M. Fenton, “Fuel cell perfluorinated sulfonic acid membrane degradation correlating accelerated stress testing and lifetime,” Chem. Rev. 112 (11), 6075–6103 (2012).

    Article  Google Scholar 

  39. J. Ramkumar, “Nafion perfluorosulphonate membrane: Unique properties and various applications,” in Functional Materials, Eds. by Banerjee and L. Tyagi, (Elsevier, 2011).

    Google Scholar 

  40. K. A. Mauritz and R. B. Moore, “State of understanding Nafion,” Chem. Rev. 104 (10), 4535–4585 (2004).

    Article  Google Scholar 

  41. W. Y. Hsu and T. D. Gierke, “Ion transport and clustering in Nafion perfluorinated membranes,” J. Membr. Sci. 13 (3), 307–326 (1983).

    Article  Google Scholar 

  42. A. B. Yaroslavtsev and V. V. Nikonenko, “Ion–exchange membrane materials: Properties, modification, and practical application,” Nanotechnologies in Russia 4 (3–40), 137–159 (2009).

    Article  Google Scholar 

  43. S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K. Lau, and J. H. Lee, “Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges,” Progress Polymer Sci. 36 (6), 813–843 (2011).

    Article  Google Scholar 

  44. V. V. Nikonenko, A. B. Yaroslavtsev, and G. Pourcelly, “Ion transfer in and through charged membranes. Structure, properties, theory. Ch. 9,” in Ionic Interactions in Natural and Synthetic Macromolecules, Eds. by A. Ciferri and A. Perico, (Wiley, New-Jersey, 2012).

    Google Scholar 

  45. Q. F. Li, R. H. He, J. O. Jensen, and N. J. Bjerrum, “Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 C,” Chem. Mater. 15 (26), 4896–4915 (2003).

    Article  Google Scholar 

  46. L. Carrette, K. A. Friedrich, and U. Stimming, “Fuel cells: Fundamentals and applications,” Fuel Cells 1 (1), 5–39 (2001).

    Article  Google Scholar 

  47. Y. Tang, S. Mu, S. Yu, Y. Zhao, H. Wang, and F. Gao, “In situ and ex situ studies on the degradation of Pd/C catalyst for proton exchange membrane fuel cells,” J. Fuel Cell Sci. Technol. 11 (5), 051004–051011 (2014).

    Article  Google Scholar 

  48. N. L. Basov, M. M. Ermilova, N. V. Orekhova, and A. B. Yaroslavtsev, “Membrane catalysis in the dehydrogenation and hydrogen production processes,” Phys. Chem. Rev. 82 (4), 352–368 (2013).

    Google Scholar 

  49. S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, “Review of the proton exchange membranes for fuel cell applications,” Int. J. Hydrogen Energy 35 (17), 9349–9384 (2010).

    Article  Google Scholar 

  50. A. L. Rusanov, D. Yu. Likhachev, and K. M. Myullen, “Proton–conducting electrolyte membranes based on aromatic condensation polymers,” Russ. Chem. Rev. 71 (9), 761–774 (2002).

    Article  Google Scholar 

  51. Y. Masanori and H. Itaru, “Anhydrous proton conducting polymer electrolytes based on poly(vinylphosphonic acid)–heterocycle composite material,” Polymer 46 (9), 2986–2992 (2005).

    Article  Google Scholar 

  52. J. Mader, L. Xiao, T. J. Schmidt, and B. C. Benicewicz, “Polybenzimidazole/acid complexes as high-temperature membranes,” Adv. Polymer Sci. 216, 63–124 (2008).

    Google Scholar 

  53. Yu. A. Dobrovol’skii, E. A. Sanginov, and A. L. Rusanov, “Proton–exchange membranes for low–temperature electrochemical devices,” Al’ternativ. Energ. Ekolog. 76 (8), 112–132 (2009).

    Google Scholar 

  54. T. Xu, “Ion exchange membranes: State of their development and perspective,” J. Membr. Sci. 263 (1–2), 1–29 (2005).

    Article  Google Scholar 

  55. A. B. Yaroslavtsev, “Composite materials with ionic conductivity: From inorganic composites to hybrid membranes,” Russ. Chem. Rev. 78 (11), 1013–1029 (2009).

    Article  Google Scholar 

  56. H. Ahmad, S. K. Kamarudin, U. A. Hasran, and W. R. W. Daud, “Overview of hybrid membranes for direct-methanol fuel-cell applications,” Int. J. Hydrogen Energy 35 (5), 2160–2175 (2010).

    Article  Google Scholar 

  57. D. J. Kim, M. J. Jo, and S. Y. Nam, “A review of polymer–nanocomposite electrolyte membranes for fuel cell application,” J. Indust. Eng. Chem. 21, 36–52 (2015).

    Article  Google Scholar 

  58. B. P. Tripathi and V. K. Shahi, “Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications,” Progr. Polym. Sci. 36 (7), 945–949 (2011).

    Article  Google Scholar 

  59. B. Bonnet, D. J. Jones, J. Roziere, L. Tchicaya, G. lberti, M. Casciola, L. Massinelli, B. Bauer, A. Peraio, and E. Ramunni, “Hybrid organic inorganic membranes for a medium temperature fuel cell,” J. New Mater. Electrochem. Syst. 3 (2), 87–92 (2000).

    Google Scholar 

  60. L. Y. Ng, A. W. Mohammad, C. P. Leo, and N. Hilal, “Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review,” Desalination 308, 15–33 (2013).

    Article  Google Scholar 

  61. M. A. Aroon, A. F. Ismail, T. Matsuura, and M. M. Montazer-Rahmati, “Performance studies of mixed matrix membranes for gas separation: A review,” Separ. Purific. Techn. 75 (3), 229–242 (2010).

    Article  Google Scholar 

  62. H. Vinh-Thang and S. Kaliaguine, “Predictive models for mixed–matrix membrane performance: A review,” Chem. Rev. 113 (7), 4980–5028 (2013).

    Article  Google Scholar 

  63. D. Bastani, N. Esmaeili, and M. Asadollahi, “Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review,” J. Indust. Eng. Chem. 19 (2), 375–393 (2013).

    Article  Google Scholar 

  64. A. B. Yaroslavtsev and Y. P. Yampolskii, “Hybrid membranes containing inorganic nanoparticles,” Mendeleev Commun. 24 (6), 319–326 (2014).

    Article  Google Scholar 

  65. S. D. Knights, K. M. Colbow, J. St–Pierre, and D. P. Wilkinson, “Aging mechanisms and lifetime of PEFC and DMFC,” J. Power Sources 127 (1–2), 127–134 (2004).

    Article  Google Scholar 

  66. R. Solassi, Y. Zou, X. Huang, K. Reifsnider, and D. Condit, “On mechanical behavior and in-plane modeling of constrained PEM fuel cell membranes subjected to hydration and temperature cycles” J. Power Sources 167 (2), 366–377 (2007).

    Article  Google Scholar 

  67. Y. Tang, A. Kosoglu, A. Karlsson, M. Santare, S. Cleghorn, and W. Johnson, “Mechanical properties of a reinforced composite polymer electrolyte membrane and its simulated performance in PEM fuel cells” J. Power Sources 175 (2), 817–825 (2008).

    Article  Google Scholar 

  68. Y. Tominaga, I.-C. Hong, S. Asai, and M. Sumita, “Proton conduction in Nafion composite membranes filled with mesoporous silica,” J. Power Sources 171 (2), 530–534 (2007).

    Article  Google Scholar 

  69. M. P. Rodgers, Z. Shi, and S. Holdcroft, “Transport properties of composite membranes containing silicon dioxide and Nafion,” J. Membr. Sci. 325 (1), 346–356 (2008).

    Article  Google Scholar 

  70. C. Ke, X. Li, S. Q. Shen, S. Qu, Z. Shao, and B. Yi, “Investigation on sulfuric acid sulfonation of in–situ sol–gel derived Nafion/SiO2 composite membrane,” Int. J. Hydrogen Energy 36 (5), 3606–3613 (2011).

    Article  Google Scholar 

  71. A. Alvarez, C. Guzman, A. Carbone, A. Sacca, I. Gatto, E. Passalacque, R. Nava, R. Ornelas, J. Ledesma-Garcia, and L. G. Arriaga, “Influence of silica morphology in composite Nafion membranes properties,” Int. J. Hydrogen Energy 36 (22), 14725–14733 (2011).

    Article  Google Scholar 

  72. V. di Noto, R. Gliubizzi, and E. Negro, “Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2)X] composite membranes,” J. Phys. Chem., B. 110 (49), 24972–24986 (2006).

    Article  Google Scholar 

  73. V. di Noto, S. Lavina, E. Negro, M. Vittadello, F. Conti, M. Piga, and G. Pace, “Hybrid inorganic–organic proton conducting membranes based on Nafion and 5 wt. % of MxOy (M–Ti, Zr, Hf, Ta and W). Part II: Relaxation phenomena and conductivity mechanism,” J. Power Sources 187 (1), 57–66 (2009).

    Article  Google Scholar 

  74. V. di Noto, N. Boaretto, E. Negro, and G. Pace, “New inorganic–organic proton conducting membranes based on Nafion and hydrophobic fluoroalkylated silica nanoparticles,” J. Power Sources 195 (23), 7734–7742 (2010).

    Article  Google Scholar 

  75. E. Yu. Safronova and A. B. Yaroslavtsev, “Nafion-type membranes doped with silica nanoparticles with modified surface,” Solid State Ionics 221, 6–10 (2012).

    Article  Google Scholar 

  76. E. Yu. Safronova and A. B. Yaroslavtsev, “Relationship between properties of hybrid ion–exchange membranes and dopant nature,” Solid State Ionics 251, 23–27 (2013).

    Article  Google Scholar 

  77. A. G. Mikheev, E. Yu. Safronova, G. Yu. Yurkov, and A. B. Yaroslavtsev, “Hybrid materials based on MF–4SC perfluorinated sulfo cation-exchange membranes and silica with proton acceptor properties,” Mendeleev Commun. 23 (2), 66–68 (2013).

    Article  Google Scholar 

  78. C. Li, G. Sun, S. Ren, J. Liu, Q. Wang, Z. Wu, H. Sun, and W. Jin, “Casting Nafion–sulfonated organosilica nano-composite membranes used in direct methanol fuel cells,” J. Membr. Sci. 272 (1–2), 50–57 (2006).

    Google Scholar 

  79. G. Kunar, A. Kim, K. Nahm, and R. Elizabeth, “Nafion membranes modified with silica sulfuric acid for the elevated temperature and lower humidity operation of PEMFC,” Int. J. Hydrogen Energy 34 (24), 9788–9794 (2009).

    Article  Google Scholar 

  80. E. Yu. Safronova and A. B. Yaroslavtsev, “Transport properties of materials based on MF–4SC membranes and silica manufactured by a casting method,” Russ. J. Inorg. Chem. 55 (10), 1499–1502 (2010).

    Article  Google Scholar 

  81. Y. F. Lin, C. Y. Yen, C. C. Ma, S.-H. Liao, C. H. Lee, Y. H. Hsiao, and H. P. Lin, “High proton-conducting Nafion/–SO3H functionalized mesoporous silica composite membranes,” J. Power Sources 171 (2), 388–395 (2007).

    Article  Google Scholar 

  82. F. Pereira, K. Vallé, P. Belleville, A. Morin, S. Lambert, C. Sanchez, “Advanced PEM fuel cell,” Chem. Mater. 20 (5), 1710–1718 (2008).

    Article  Google Scholar 

  83. V. Ramani, H. R. Kunz, and J. M. Fenton, “Metal dioxide supported heteropolyacid/Nafion® composite membranes for elevated temperature/low relative humidity PEFC operation,” J. Membr. Sci. 279 (1–2), 506–512 (2006).

    Article  Google Scholar 

  84. A. Mahreni, A. B. Mohamad, A. A. H. Kadhum, W. R. W. Daud, and S. E. Iyuke, “Nafion/silicon oxide/phosphotungstic acid nanocomposite membrane with enhanced proton conductivity,” J. Membr. Sci. 327 (1–2), 32–40 (2009).

    Article  Google Scholar 

  85. E. Yu. Safronova, I. A. Stenina, and A. B. Yaroslavtsev, “Synthesis and characterization of MF–4SK + SiO2 hybrid membranes modified with tungstophosphoric heteropolyacid,” Russ. J. Inorg. Chem. 55 (1), 13–17 (2010).

    Article  Google Scholar 

  86. Y. Xiang, M. Yang, J. Zhang, F. Lan, and S. Lu, “Phosphotungstic acid (HPW) molecules anchored in the bulk of Nafion as methanol–blocking membrane for direct methanol fuel cells,” J. Membr. Sci. 368 (1–2), 241–245 (2011).

    Article  Google Scholar 

  87. I. A. Prikhno, E. Yu. Safronova, A. B. Yaroslavtsev, and V. Vu, “Synthesis and study of hybrid materials based on the membranes of Nafion, hydrated silica, phosphotungstic heteropoly acid and its acid salts,” Petrol. Chem. 54 (7), 556–561 (2014).

    Article  Google Scholar 

  88. M. Amirinejad, S.S. Madaeni, M.A. Navarra, E. Rafiee, and B. Scrosati, “Preparation and characterization of phosphotungstic acid–derived salt/Nafion nanocomposite membranes for proton exchange membrane fuel cells,” J. Power Sources 196 (3), 988–998 (2011).

    Article  Google Scholar 

  89. W. Xu, T. Lu, C. Liu, and W. Xing, “Low methanol permeable composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells,” Electrochim. Acta 50 (16–17), 3280–3285 (2005).

    Article  Google Scholar 

  90. E. V. Gerasimova, E. Yu. Safronova, A. A. Volodin, A. E. Ukshe, Yu. A. Dobrovolsky, and A. B. Yaroslavtsev, “Electrocatalytic properties of the nanostructured electrodes and membranes in hydrogen–air fuel cells,” Catalysis Today 193 (1), 81–86 (2012).

    Article  Google Scholar 

  91. C. Yang, S. Srimivasan, A. Bocarsly, S. Tulyani, and J. Benziger, “A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes,” J. Membr. Sci. 237 (1–2), 145–161 (2004).

    Article  Google Scholar 

  92. G. Alberti, M. Casciola, D. Capitani, A. Donnadio, R. Narducci, M. Pica, and M. Sganappa, “Novel Nafion–zirconium phosphate nanocomposite membranes with enhanced stability of proton conductivity at medium temperature and high relative humidity,” Electrochim. Acta 52 (28), 8125–8232 (2007).

    Article  Google Scholar 

  93. Y. Zhang, H. Zhang, C. Bi, and X. Zhu, “An inorganic/organic self–humidifying composite membranes for proton exchange membrane fuel cell application,” Electrochim. Acta 53 (12), 4096–4103 (2008).

    Article  Google Scholar 

  94. F. Bauer and M. Willert-Porada, “Comparison between Nafion® and a Nafion® zirconium phosphate nano–composite in fuel cell applications,” Fuel Cells 6 (3–4), 261–269 (2006).

    Article  Google Scholar 

  95. A. K. Sahu, S. Pitchumani, P. Sridhar, and A. K. Shukla, “Co-assembly of a Nafion/mesoporous zirconium phosphate composite membrane for PEM fuel cells,” Fuel Cells, 9 (2), 139–147 (2009).

    Article  Google Scholar 

  96. B. R. Matos, E. I. Santiago, F. C. Fonseca, M. Linardi, V. Lavayen, R. G. Lacerda, L. O. Ladeira, and A. S. Ferlauto, “Nafion–titanate nanotube composite membranes for PEM fuel cell operating at high temperature,” J. Electrochem. Soc., B 154 (12), 1358–1361 (2007).

    Article  Google Scholar 

  97. Y. Patil and K. A. Mauritz, “Durability enhancement of Nafion® fuel cell membranes via in situ sol–gel–derived titanium dioxide reinforcement,” J. Appl. Polym. Sci. 113 (5), 3269–3278 (2009).

    Article  Google Scholar 

  98. E. I. Santiago, R. A. Isidoro, M. A. Dresch, B. R. Matos, M. Linardi, and F. C. Fonseca, “Nafion-TiO2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature,” Electrochim. Acta 54 (16), 4111–4117 (2009).

    Article  Google Scholar 

  99. B. R. Matos, R. A. Isidoro, E. I. Santiago, and F. C. Fonseca, “Performance enhancement of direct ethanol fuel cell using Nafion composites with high volume fraction of titania,” J. Power Sources 268, 706–711 (2014).

    Article  Google Scholar 

  100. C. Bonis, D. Cozzi, B. Mechen, A. Depifanio, A. Rainer, D. Porcellinis, and S. Licoccia, Effect of filler surface functionalization on the performance of Nafion/titanium oxide composite membranes, Electrochim. Acta 147 (3), 418–425 (2014).

    Article  Google Scholar 

  101. N. H. Jalani, K. Dunn, and R. Datta, “Synthesis and characterization of Nafion®–MO2 (M–Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells,” Electrochim. Acta 51 (3), 553–560 (2005).

    Article  Google Scholar 

  102. V. S. Silva, B. Ruffmann, H. Silva, V. B. Silva, A. Mendes, L. M. Madeira, and S. Nunes, “Zirconium oxide hybrid membranes for direct methanol fuel cells–evaluation of transport properties,” J. Membr. Sci. 284 (1–2), 137–144 (2006).

    Article  Google Scholar 

  103. J. Pan, H. Zhang, W. Chen, and M. Pan, “Nafion–zirconia nanocomposite membranes formed via in situ sol–gel process,” Int. J. Hydrogen Energy 35 (7), 2796–2801 (2010).

    Article  Google Scholar 

  104. G. Giffin, M. Piga, S. Lavina, M. Navarra, A. Epifanio, B. Srcosati, and V. di Noto, “Characterization of sulfated-zirconia/Nafion® composite membranes for proton exchange membrane fuel cells,” J. Power Sources 198, 66–75 (2012).

    Article  Google Scholar 

  105. Y. T. Kim, K. H. Kim, M. K. Song, and H. W. Rhee, Nafion/ZrSPP composite membrane for high temperature operation of proton exchange membrane fuel cells, Current Appl. Phys. 6 (4), 612–615 (2006).

    Article  Google Scholar 

  106. J. Liu, T. Xu, C. Wu, and G. Shao, “Recent patents on the preparation and application of hybrid materials and membranes,” Recent Patents Eng. 1 (3), 214–227 (2007).

    Article  Google Scholar 

  107. V. Ijeri, L. Cappelletto, S. Bianco, M. Tortello, P. Spineli, and E. Tresso, “Nafion and carbon nanotube nanocomposites for mixed proton and electron conduction,” J. Membr. Sci. 363 (1–2), 265–270 (2010).

    Article  Google Scholar 

  108. H. Lian, W. Qian, L. Estevez, H. Liu, Yu. Liu, T. Jiang, K. Wang, G. Wenli, and E. Giannels, “Enhances actuation in functionalized carbon nanotube-Nafion composites,” Sensors Actuations B: Chemical 156 (1), 187–193 (2011).

    Article  Google Scholar 

  109. A. I. Perepelkina, E. Y. Safronova, A. S. Shalimov, and A. B. Yaroslavtsev, “Hybrid materials based on MF–4SK membranes with silicon carbide and carbon nanotubes,” Petrol. Chem. 52 (7), 475–479 (2012).

    Article  Google Scholar 

  110. R. Kannan, B. A. Kakade, and V. K. Pillai, “Polymer electrolyte fuel cells using Nafion–based composite membranes with functionalized carbon nanotubes,” Angew. Chem., Int. Ed. 47 (14), 2653–2656 (2008).

    Article  Google Scholar 

  111. S. A. Novikova, E. Yu. Safronova, A. A. Lysova, and A. B. Yaroslavtsev, “Influence of incorporated nanoparticles on ion conductivity of MF–4SC membrane,” Mendeleev Commun. 20 (3), 156–157 (2010).

    Article  Google Scholar 

  112. A. B. Yaroslavtsev, Yu. A. Karavanova, and E. Yu. Safronova, “Ionic conductivity of hybrid membranes,” Petrol. Chem. 51 (7), 473–479 (2011).

    Article  Google Scholar 

  113. E. Yu. Safronova, I. A. Stenina, A. A. Pavlov, V. I. Volkov, G. Yu. Yurkov, and A. B. Yaroslavtsev, “Ion transport mechanism in hybrid MF–4SC membranes modified by silica and phosphotungstic heteropoly acid,” Russ. J. Inorg. Chem. 56 (2), 152–155 (2011).

    Article  Google Scholar 

  114. A. B. Yaroslavtsev, “Correlation between the properties of hybrid ion-exchange membranes and the nature and dimensions of dopant particles,” Manotechnol. in Russia 7 (9–10), 437–451 (2012).

    Article  Google Scholar 

  115. N. Wagner, W. Schnurnberger, B. Mueller, and M. Lang, “Electrochemical impedance spectra of solid–oxide fuel cells and polymer membrane fuel cells,” Electrochim. Acta 43 (24), 3785–3793 (1998).

    Article  Google Scholar 

  116. R. K. A. Rasheed and S. H. Chan, “Transient carbon monooxide poisoning kinetics during warm–up period of a high–temperature PEMFC–Physical model and parametric study,” Appl. Energy 140, 44–51 (2015).

    Article  Google Scholar 

  117. J. Zhang, PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, (Springer, 2008).

    Book  Google Scholar 

  118. K. Kinoshita, “Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes,” J. Electrochem. Soc. 137 (5), 845–848 (1990).

    Article  Google Scholar 

  119. S. Mukerjee and J. McBreen, “Effect of particle size on the electrocatalysis by carbon–supported Pt electrocatalysts: An in situ XAS pnvestigation,” J. Electroanal. Chem. 448 (2), 163–173 (1998).

    Article  Google Scholar 

  120. X. Zhao, M. Yin, L. Ma, L. Liang, C. Liu, J. Liao, T. Lu, and W. Xing, “Recent advances in catalysts for direct methanol fuel cells,” Energy Environ. Sci. 4, 2736–2753 (2011).

    Article  Google Scholar 

  121. N. V. Smirnova, A. B. Kuriganova, D. V. Leont’eva, I. N. Leont’ev, and A. S. Mikheikin, “Structural and electrocatalytic properties of Pt/C and Pt–Ni/C catalysts prepared by electrochemical dispersion,” Kinet. Catal. 54 (2), 255–262 (2013).

    Article  Google Scholar 

  122. T. A. Hamad, A. A. Agll, Y. M. Hamad, S. Bapat, M. Thomas, K. B. Martin, and J. W. Sheffield, “Study of a molten carbonate fuel cell combined heat, hydrogen and power system: End–use application,” Case Studies Thermal Eng. 1 (1), 45–50 (2013).

    Article  Google Scholar 

  123. T. A. Adams, J. Nease, D. Tucker, and P. I. Barton, “Energy conversion with solid oxide fuel cell systems: A review of concepts and outlooks for the short-and long-term,” Industr. Eng. Chem. Res. 52 (9), 3089–3111 (2013).

    Article  Google Scholar 

  124. S. Park, J. W. Lee, and B. N. Popov, “A review of gas diffusion layer in PEM fuel cells: Materials and designs,” Int. J. Hydrogen Energy 37 (7), 5850–5865 (2012).

    Article  Google Scholar 

  125. M. K. Debe, “Electrocatalyst approaches and challenges for automotive fuel cells,” Nature 486 (7401), 43–51 (2012).

    Article  Google Scholar 

  126. A. Rabis, P. Rodriguez, and T. J. Schmidt, “Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges,” ACS Catalysis 2 (5), 864–890 (2012).

    Article  Google Scholar 

  127. E. Antolini, “Carbon supports for low–temperature fuel cell catalysts,” Appl. Catalysis B: Environ. 88 (1–2), 1–24 (2009).

    Google Scholar 

  128. E. S. Wiedner, J. Y. Yang, S. Chen, S. Raugei, W. G. Dougherty, W. S. Kassel, M. L. Helm, R. M. Bullock, M. R. DuBois, and D. L. DuBois, “Stabilization of nickel complexes with Ni0···H–N bonding interactions using sterically demanding cyclic diphosphine ligands,” Organometallics 31 (1), 144–156 (2012).

    Article  Google Scholar 

  129. S. E. Smith, J. Y. Yang, D. L. DuBois, and R. M. Bullock, “Reversible electrocatalytic production and oxidation of hydrogen at low overpotentials by a functional hydrogenase mimic,” Angewand. Chemie. Int. Ed. in English 51 (13), 3152–3155 (2012).

    Article  Google Scholar 

  130. S. Wiese, U. J. Kilgore, D. L. DuBois, and R. M. Bullock, “[Ni(PMe2NPh2)2](BF4)2 as an electrocatalyst for H2 production,” ACS Catalysis 2 (5), 720–727 (2012).

    Article  Google Scholar 

  131. S. Raugei, S. Chen, M. H. Ho, B. Ginovska-Pangovska, R. J. Rousseau, M. Dupuis, D. L. DuBois, and R. M. Bullock, “The role of pendant amines in the breaking and forming of molecular hydrogen catalyzed by nickel complexes,” Chemistry: A Eur. J. 18 (21), 6493–6506 (2012).

    Article  Google Scholar 

  132. M. O’Hagan, M. H. Ho, J. Y. Yang, A. M. Appel, M. R. DuBois, S. Raugei, W. J. Shaw, D. L. DuBois, and R. M. Bullock, “Proton delivery and removal in [Ni(PR2NR’2) 2]+ 2 hydrogen production and oxidation catalysts,” J. Am. Chem. Soc. 134 (47), 19409–19424 (2012).

    Article  Google Scholar 

  133. M. Watanabe, M. Uchida, and S. Motoo, “Preparation of highly dispersed Pt+Ru alloy clusters and the activity for the electrooxidation of methanol,” J. Electroanal. Chem. 229 (1–2), 395–406 (1987).

    Article  Google Scholar 

  134. H. R. Colon-Mercado, H. Kim, and B. N. Popov, “Durability study of Pt3Ni1 catalysts as cathode in PEM fuel cells,” Electrochem. Commun. 6 (8), 795–799 (2004).

    Article  Google Scholar 

  135. M. R. Tarasevich, V. A. Bogdanovskaya, B. M. Grafov, N. M. Zagudaeva, K. V. Rybalka, A. V. Kapustin, and Yu. A. Kolbanovskii, “Electrocatalytic properties of binary systems based on platinum and palladium in the reaction of oxidation of hydrogen poisoned by carbon monoxide,” Russ. J. Electrochem. 41 (7), 747–756 (2005).

    Google Scholar 

  136. K. Sasaki, M. Shao, and R. R. Adzic, “Dissolution and stabilization of platinum in oxygen cathodes,” in Polymer Electrolyte Fuel Cell Durability, Ed. by T. J. Schmidt, (Springer–Verlag, New York, 2009).

    Google Scholar 

  137. W. Gang, S. Raja, L. Deyu, and L. Ning, “Enhanced methanol electro–oxidation activity of PtRu catalysts supported on heteroatom–doped carbon,” Electrochim. Acta 53 (26), 7622–7629 (2008).

    Article  Google Scholar 

  138. D. J. Guo, L. Zhao, and X. P. Qiu, “Novel hollow PtRu nanospheres supported on multi–walled carbon nanotube for methanol electrooxidation,” J. Power Sources 177 (2), 334–338 (2008).

    Article  Google Scholar 

  139. Y. Cheng, C. Xu, P. Shen, and S. Jiang, “Effect of nitrogen–containing functionalization on the electrocatalytic activity of PtRu nanoparticles supported on carbon nanotubes for direct methanol fuel cells,” Appl. Catalysis B: Environm. 158–159, 140–149 (2014).

    Article  Google Scholar 

  140. M. Goetz and H. Wendt, “Composite electrocatalysts for anodic methanol and methanol reformate oxidation,” J. Appl. Electrochem. 31 (7), 811–817 (2001).

    Article  Google Scholar 

  141. M. Watanabe and S. Motoo, “Electrocatalysis by ad–atoms: Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad–atoms,” J. Electroanal. Chem. 60 (3), 275–283 (1975).

    Article  Google Scholar 

  142. T. M. Koper, “Electrocatalysis on bimetallic and alloy surfaces,” Surf. Sci. 548 (1–3), 1–3 (2004).

    Article  Google Scholar 

  143. W. Z. Hunga, W. H. Chunga, D. S. Tsai, and D. P. Wilkinson, “CO tolerance and catalytic activity of Pt/Sn/SnO2 nanowires loaded on a carbon paper,” Electrochim. Acta 55 (6), 2116–2122 (2010).

    Article  Google Scholar 

  144. G. A. Camara, E. A. Ticianelli, S. Mukerjee, S. J. Lee, and J. McBreen, “CO poisoning of hydrogen oxidation reaction in PEMFCs,” J. Electrochem. Soc., A 149 (6), 748–753 (2002).

    Article  Google Scholar 

  145. S. J. Liao, H. Y. Liu, and H. Meng, “Synthesis and characterization of Pt–Se/C electrocatalyst for oxygen reduction and its tolerance to methanol,” J. Power Sources 171 (2), 471–476 (2007).

    Article  Google Scholar 

  146. V. E. Guterman, S. V. Belenov, T. A. Lastovina, E. P. Fokina, N. V. Prutsakova, and Ya. B. Konstantinova, “Microstructure and electrochemically active surface area of PtM/C electrocatalists,” Russ. J. Electrochem. 47 (8), 933–939 (2011).

    Article  Google Scholar 

  147. D. L. Dubois, “Development of molecular electrocatalysts for energy storage,” Inorg. Chem. 53 (8), 3935–3960 (2014).

    Article  Google Scholar 

  148. V. A. Bogdanovskaya, M. R. Tarasevich, and O. V. Lozovaya, “Kinetics and mechanism of oxygen electroreduction on PtCoCr/C catalyst containing 20–40 wt % platinum,” Russ. J. Electrochem. 47 (7), 846–860 (2011).

    Article  Google Scholar 

  149. Y. C. Park, S. Kang, S. K. Kim, S. Lim, D. H. Jung, D. Y. Lee, Y. G. Shulc, and D. H. Peck, “Effects of porous and dense electrode structures of membrane electrode assembly on durability of direct methanol fuel cells,” Int. J. Hydrogen Energy 36 (23), 15313–15322 (2011).

    Article  Google Scholar 

  150. A. Y. Lo, C. T. Hung, N. Yu, C. T. Kuo, and S. B. Liu, “Syntheses of carbon porous materials with varied pore sizes and their performances as catalyst supports during methanol oxidation reaction,” Appl. Energy 100, 66–74 (2012).

    Article  Google Scholar 

  151. A. Baena-Moncada, R. Coneo-Rodriguez, J. Calderon, J. Florez-Montano, C. Barbero, G. Planes, J. Rodrigues, and E. Pastor, “Macroporous carbon as support for PtRu catalysts,” Int. J. Hydrogen Energy 39 (8), 3964–3969 (2014).

    Article  Google Scholar 

  152. A. Halder, S. Sharma, M. S. Hegde, and N. Ravishankar, “Controlled attachment of ultrafine platinum nanoparticles on functionalized carbon nanotubes with high electrocatalytic activity for methanol oxidation,” J. Phys. Chem. C 113 (4), 1466–1473 (2009).

    Article  Google Scholar 

  153. S. Kraemer, K. Wikander, G. Lindbergh, A. Lundblad, and A. E. C. Palmqvist, “Evaluation of TiO2 as catalyst support in Pt–TiO2/C composite cathodes for the proton exchange membrane fuel cell,” J. Power Sources 180 (1), 185–190 (2008).

    Article  Google Scholar 

  154. M. S. Saha, M. N. Banis, Y. Zhang, R. Li, X. Sun, M. Cai, and F. T. Wagner, “Tungsten oxide nanowires grown on carbon paper as Pt electrocatalyst support for high performance proton exchange membrane fuel cells,” J. Power Sources 192 (2), 330–335 (2009).

    Article  Google Scholar 

  155. N. R. Elezovic, B. M. Babic, V. R. Radmilovic, L. M. Vracar, and N. V. Krstajic, “Synthesis and characterization of MoOx–Pt/C and TiOx–Pt/C nano–catalysts for oxygen reduction,” Electrochim. Acta 54 (9), 2404–2409 (2009).

    Article  Google Scholar 

  156. H. Chhina, S. Campbell, and O. Kesler, “Ex situ and in situ stability of platinum supported on niobium–doped titania for PEMFCs,” J. Electrochem. Soc., B 156 (10), 1232–1237 (2009).

    Article  Google Scholar 

  157. A. V. Grigorieva, E. A. Goodilin, L. E. Derlyukova, T. A. Anufrieva, A. B. Tarasov, Yu. A. Dobrovolskii, and Yu. D. Tretyakov, “Titania nanotubes supported platinum catalyst in CO oxidation process,” Appl. Catal. A: General 362 (1–2), 20–25 (2009).

    Article  Google Scholar 

  158. X. Liu, J. Chen, G. Liu, L. Zhang, H. Zhang, and B. Yi, “Enhanced long-term durability of proton exchange membrane fuel cell cathode by employing Pt/TiO2/C catalysts,” J. Power Sources 195 (13), 4098–4103 (2010).

    Article  Google Scholar 

  159. A. Bauer, C. Song, A. Ignaszak, R. Hui, J. Zhang, L. Chevallier, D. Jones, and J. Roziere, “Improved stability of mesoporous carbon fuel cell catalyst support through incorporation of TiO2,” Electrochim. Acta 55 (28), 8365–8370 (2010).

    Article  Google Scholar 

  160. S. Y. Huang, P. Ganesan, and B. N. Popov, “Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell,” Appl. Catal. B: Environm. 102 (1–2), 71–77 (2011).

    Article  Google Scholar 

  161. D. S. Kim, E. F. A. Zeid, and Y. T. Kim, “Additive treatment effect of TiO2 as supports for Pt–based electrocatalysts on oxygen reduction reaction activity,” Electrochim. Acta 55 (11), 3628–3633 (2010).

    Article  Google Scholar 

  162. L. Xing, J. Jia, Y. Wang, B. Zhang, and S. Dong, “Pt modified TiO2 nanotubes electrode: Preparation and electrocatalytic application for methanol oxidation,” Int. J. Hydrogen Energy 35 (22), 12169–12173 (2010).

    Article  Google Scholar 

  163. P. Xiao, H. Song, X. Qiu, W. Zhua, L. Chen, U. Stimming, and P. Bele, “Study on the co–catalytic effect of titanate nanotubes on Pt–based catalysts in direct alcohol fuel cells,” Appl. Catal. B: Environm. 97 (1–2), 204–212 (2010).

    Article  Google Scholar 

  164. B. L. Garcia, R. Fuentes, and J. W. Weidner, “Low–temperature synthesis of a PtRu/Nb0.1Ti0.9O2 electrocatalyst for methanol oxidation fuel cells and energy conversion,” Electrochem. Solid State Lett., B 10 (7), 108–110 (2007).

    Article  Google Scholar 

  165. T. Okanishi, T. Matsui, T. Takeguchi, R. Kikuchi, and K. Eguchi, “Chemical interaction between Pt and SnO2 and influence on adsorptive properties of carbon monoxide,” Appl. Catal. A: General 298, 181–187 (2006).

    Article  Google Scholar 

  166. A. T. Marshall and R. G. Haverkamp, “Electrocatalytic activity of IrO2–RuO2 supported on Sb–doped SnO2 nanoparticles,” Electrochim. Acta 55 (6), 1978–1984 (2010).

    Article  Google Scholar 

  167. J. M. Lee, S. B. Han, Y. W. Lee, Y. J. Song, J. Y. Kim, and K. W. Park, “RuO2–SnO2 nanocomposite electrodes for methanol electrooxidation,” J. Alloys Compd. 506 (1), 57–62 (2010).

    Article  Google Scholar 

  168. L. A. Frolova, Yu. A. Dobrovol’skii, and N. G. Bukun, “Oxide supported platinum electrocatalysts for hydrogen and alcohol fuel cells,” Russ. J. Electrochem. 47 (6), 697–708 (2011).

    Article  Google Scholar 

  169. Z. Cui, L. Feng, C. Liu, and W. Xing, “Pt nanoparticles supported on WO3/C hybrid materials and their electrocatalytic activity for methanol electro-oxidation,” J. Power Sources 196 (5), 2621–2626 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Stenina.

Additional information

Original Russian Text © I.A. Stenina, E.Yu. Safronova, A.V. Levchenko, Yu.A. Dobrovolsky, A.B. Yaroslavtsev, 2016, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stenina, I.A., Safronova, E.Y., Levchenko, A.V. et al. Low-temperature fuel cells: Outlook for application in energy storage systems and materials for their development. Therm. Eng. 63, 385–398 (2016). https://doi.org/10.1134/S0040601516060070

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601516060070

Keywords

Navigation