Experimental elaboration of liquid droplet cooler-radiator models under microgravity and deep vacuum conditions


The basic results of space tests of liquid droplet cooler-radiator models as the main elements of frameless systems for low-grade heat rejection are considered. The studies carried out have been analyzed and intermediate elaboration’s results are summarized, which concern (1) the development of generators of droplet propellant flows, (2) revealing an operational behavior of fluid collectors of various types and analysis of unsolved problems associated with droplet collection upon the open trajectory’s section passage, and (3) provision of the coolant circulation contour’s closing. The necessity is substantiated for the activization of works directed to carrying out space experiments with improved radiator models and new promising propellants in order to provide a possibility of creating new space power plants characterized by megawatt power levels.

This is a preview of subscription content, access via your institution.


  1. 1.

    E. P. Volkov, V. S. Vysotskii, A. V. Karpyshev, et al., Production of first in Russia high-temperature superconducting cable, Izv. Ross. Akad. Nauk, Energ., No. 4, 31–43 (2009).

    Google Scholar 

  2. 2.

    E. P. Volkov and E. A. Dzhafarov, “Superconducting transformer with rotating magnetic field,” Izv. Ross. Akad. Nauk, Energ., No. 3, 113–121 (2012).

    Google Scholar 

  3. 3.

    E. P. Volkov and E. A. Dzhafarov, “HTSC transformer with localized magnetic field,” Izv. Ross. Akad. Nauk, Energ., No. 5, 3–10 (2013).

    Article  Google Scholar 

  4. 4.

    Sh. I. Lutidze and E. A. Dzhafarov, Superconducting Transformers (Nauchtekhlitizdat, Moscow, 2002) [in Russian].

    Google Scholar 

  5. 5.

    K. Hiroki, K. Masashi, K. Toyoaki, et al., “Current limiting and recovery characteristics of 2MVA class superconducting fault current limiting transformer,” IEEE Trans. Appl. Supercond., 21, 1401–1404 (2011).

    Article  Google Scholar 

  6. 6.

    G. Wojtasiewicz, T. Janowski, S. Kozak, et al., “Experimental investigation of the model of superconducting transformer with the winding made of 2G HTS tape,” IEEE Trans Appl. Supercond., 22, 5500604 (2012).

    Article  Google Scholar 

  7. 7.

    D. Shaotao, X. Liye, W. Zikai, et al., “Development and demonstration of 1 MJ High-Tc SMES,” IEEE Trans. Appl. Supercond., 22, 5700304 (2012).

    Article  Google Scholar 

  8. 8.

    M. Staines, P. Mohinder, M. J. Long, et al., The Development of a Roebel Cable Based 1 MVA HTS Transformer, Industrial Research Limited (New Zealand), (2011).

    Google Scholar 

  9. 9.

    Y. Wang, X. Zhao, J. Han, etal., “Development and test in grid of 630 kVA three-phase high temperature superconducting transformer,” Front. Elektr. Electron. Eng. China, 4, 104–113 (2009).

    Article  Google Scholar 

  10. 10.

    E. P. Volkov and E. A. Dzhafarov, RF Patent No. 2516291, Byull. Izobr., No. 14 (2014).

  11. 11.

    G. N. Petrov, Electrical Machines (Energiya, Moscow, 1974) [in Russian].

    Google Scholar 

  12. 12.

    M. P. Kostenko and L. M. Piotrovskii, Electrical Machines (Energiya, Moscow, 1964) [in Russian].

    Google Scholar 

  13. 13.

    S. B. Vasyutinskii, Questions of Theory and Calculation of Transformers (Energiya, Leningrad, 1970) [in Russian].

    Google Scholar 

  14. 1.

    L. A. Dissado and J. C. Fothergill, Electrical Degradation and Breakdown in Polymers (Peter Peregrinus, London, 1992).

    Book  Google Scholar 

  15. 2.

    S. Kitai, S. Asai, and K. Hirotsu, “Long-term ageing phenomena in XLPE cables,” in Proc. 2nd Int. Conf. on Polymer Insulated Power Cables–Jicable’87, Versailles, France, 1987 A 9.4, pp. 446–450.

    Google Scholar 

  16. 3.

    T. Fukuda and Z. Iwata, “Progress in technology for HV cables, insulated with XLPE,” Furukawa Electric Rev., No. 5, 1–18 (1987).

    Google Scholar 

  17. 4.

    K. Kaminaga and N. Yoshifuji, et al., “Study on degradation mechanism of XLPE cables,” in Proc. 4nd Int. Conf. on Polymer Insulated Power Cables–Jicable’95, Versailles, France, 1995 A 8.4, pp. 215–220.

    Google Scholar 

  18. 5.

    N. Hozumi, T. Okamoto, and H. Fukagawa, “Simultaneous measurement of microscopic image and discharge pulses at the moment of electrical tree initiation,” Japan. J. Appl. Phys. 27, 572–576 (1988).

    Article  Google Scholar 

  19. 6.

    Methods of Test for Evaluating the Resistance of Insulating Materials against the Initiation of Electrical Trees IEC Technical Report 1072 (1991).

  20. 7.

    M. Yu. Shuvalov, M. A. Mavrin, V. L. Ovsienko, and A. V. Romashkin, “Videomicroscopy of electrical and water triings,” Elektrichestvo, No. 7, 68–76 (1997).

    Google Scholar 

  21. 8.

    V. L. Ovsienko, M. Yu. Shuvalov, D. V. Koloskov, and A. V. Romashkin, “Possibilities of experiment in the study of electrical isolation of high-tension cables,” Kabel’naya Tekhnika, Nos. 10–11, 47–57 (1997).

    Google Scholar 

  22. 9.

    M. Yu. Shuvalov, Y. V. Obraztsov, V. L. Ovsienko, A. Kruchkov, and P. Huotari, “The study of on-line relaxation effect on internal mechanical stresses and dielectric strength of HV cable insulation,” in Proc. 5th Int. Conf. on Insulated Power Cables–Jicable-99, Versailles, France, 1999, C 6.5, pp. 798–804.

    Google Scholar 

  23. 10.

    V. L. Ovsienko, M. Yu. Shuvalov, M. I. Shashakov, and A. M. Khokhlov, RF Patent No. 2137104, Byull. Izobr., 1999, No. 25, Part 3, p. 504.

    Google Scholar 

  24. 11.

    N. Shimizu and C. Laurent, “Electrical tree initiation,” IEEE Trans. Dielectr. Electr. Insul. 5, 651–659 (1998).

    Article  Google Scholar 

  25. 12.

    G. C. Montanari, “Electrical life threshold models for solid insulated materials subjected to electrical and multiple stresses. Investigation and comparison of life models,” IEEE Trans. Electr. Insul. 27, 974–986 (1992).

    Article  Google Scholar 

  26. 13.

    L. Simoni, G. Mazzanti, and G. C. Montanari, “General multi-stress life model for insulating materials with or without evidence for thresholds,” IEEE Trans. Electr. Insul. 28, 349–364 (1993).

    Article  Google Scholar 

  27. 14.

    T. Tanaka and A. Greenwood, “Effects of charge injection and extraction on tree initiation in polyethylene,” IEEE Trans. Power Apparat. Syst. 97, 1749–1759 (1978).

    Article  Google Scholar 

  28. 15.

    M. Yu. Shuvalov, “Study of high power cables, development of improved methods of electrical calculation and diagnostics,” Doctoral (Eng.) Dissertation (VNIIKP, Moscow, 2000)

    Google Scholar 

  29. 16.

    M. Yu. Shuvalov, “Initiation of electrical triing as the process of development of micronidal explosive unstability,” Elektrotekhnika, No. 12, 12–20 (1997).

    Google Scholar 

  30. 17.

    Y. V. Obraztsov and M. Y. Shuvalov, “Model for highvoltage extruded cable insulation ageing: Electrical tree inception as explosive instability development,” in Proc. Int. Conf. on Large High Voltage Electric Systems (CIGRE (in French: Conseil International des Grands Réseaux Électriques)), Paris, 1998, Nos. 15-204, (1998).

  31. 18.

    I. B. Peshkov and M. Yu. Shuvalov, “New approach to estimation of power high-tension cable resource,” Izv. AN SSSR. Energ. Transp., No. 4, 23–34 (1991).

    Google Scholar 

  32. 19.

    E. T. Larina and M. Yu. Shuvalov, “Electrical ageing and electrical triing of cable isolation,” in Study and Production of Cables and Wires. Coll. Sci. Papers, No. 31, (Moscow, 1991), pp. 21–42 [in Russian].

  33. 20.

    M. Yu. Shuvalov, “Elements of design of high-tension cables with plastic isolation,” Kabel’naya Tekhnika, No. 5, 25–29 (1994).

    Google Scholar 

  34. 21.

    S. Nagasaki, N. Yoshida, and M. Aihara, “Philosophy of design and experience on high voltage XLPE cables and accessories in Japan,” in Proc. Int. Conf. on Large High Voltage Electric Systems (CIGRE (in French: Conseil International des Grands Réseaux Électriques)), Paris, 1998, Nos. 21-01 (1988).

  35. 22.

    T. Kubota, Y. Takahashi, S. Sakuma, et al., “Development of 500 kV XLPE cables and accessories for long distance underground transmission line?Part I: Insulation design of cables,” WM 097-6PWRD. Publication ETR No. 3A-2038, IEEE (1944).

    Google Scholar 

  36. 23.

    H. Tanaka, T. Tanaka, H. Noda, et al., “Technical progress of HV XLPE insulated power cable (Part 3)? Development of the 500 kV XLPE cable and joint for long distance transmission line,” Furukawa Rev., No. 15, 19–29 (1996).

    Google Scholar 

  37. 24.

    E. T. Larina, Power Cables and High Voltage Cable Lines (Energoatomizdat, Moscow, 1996) [in Russian].

    Google Scholar 

  38. 1.

    N. V. Bondareva, L. M. Glukhov, A. A. Koroteev, V. G. Krasovskii, L. M. Kustov, Yu. A. Nagel’, A. A. Safronov, N. I. Filatov, and E. A. Chernikova, “Frameless systems of low-potential heat removing in cosmos: Successes of workings off and unsolved problems,” Izv. Ross. Akad. Nauk, Energ., No. 4, (2015) (in press).

  39. 2.

    G. V. Konyukhov, A. A. Koroteev, and V. P. Poluektov, “Study of working process in tiny refrigerator-radiator at microgravitation and deep vacuum,” Polet, No. 4, 26–32 (2001).

    Google Scholar 

  40. 3.

    “Study of hydrodynamics and heat transfer of monodispersed tiny flows at microgravitation,” Express report on cosmic experiment, cypher “Kaplya-2”, No. 051-12/19-14, GNTs FGUP “Tsentr Keldysha”, OAO RKK “Energiya” im. S.P. Koroleva, 2014.

  41. 4.

    L. A. Donskoi, V. P. Pylev, B. A. Rabinovich, and V. V. Sergeev, “Study of parameters of rarefied atmosphere surrounding the space vehicles during orbital flight,” Aviakosm. Priborostr., No. 6, (2003).

  42. 5.

    B. V. Gnedenko, Probability Theory Course (GITTL, Moscow, 1954) [in Russian].

    Google Scholar 

  43. 6.

    S. N. Buravova, S. M. Gavrilkin, and Yu. A. Gordopolov, “Dynamic fatigue,” Tech. Phys. 50, 1038–1042 (2005).

    Article  Google Scholar 

  44. 7.

    V. K. Kedrinskii, V. V. Kovalev, and S. I. Plaksin, “On one model of bubble cavitation in real liquid,” Prikl. Mekh. Tekh. Fiz. 27, 81–85 (1986).

    Google Scholar 

  45. 8.

    M. A. Askarov, “Study of relative cavitation durability of some metals and alloys,” Akust. Zh. 22, 326–331 (1976).

    Google Scholar 

  46. 9.

    V. V. Pilipenko, Cavitation Autooscillations (Naukova Dumka, Kiev, 1989) [in Russian].

    Google Scholar 

  47. 10.

    V. E. Nakoryakov, B. G. Pokusaev, and I. R. Shreiber, Wave Dynamics of Gasand Vapor-Liquid Media (Energoatomizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  48. 11.

    I. V. Anan’ev, Handbook for Calculation of Self-Oscillations of Elastic Systems (OGIZ GITTL, Moscow, 1946) [in Russian].

    Google Scholar 

  49. 12.

    D. V. Sivukhin, General Course of Physics. Vol. 1. Mechanics (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. A. Koroteev.

Additional information

Original Russian Text © A.A. Koroteev, Yu.A. Nagel, N.I. Filatov, 2015, published in Izvestiya Rossiiskoi Akademii Nauk. Energetika.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koroteev, A.A., Nagel, Y.A. & Filatov, N.I. Experimental elaboration of liquid droplet cooler-radiator models under microgravity and deep vacuum conditions. Therm. Eng. 62, 965–970 (2015). https://doi.org/10.1134/S0040601515130066

Download citation


  • frameless system for low-grade heat rejection
  • liquid droplet cooler-radiator
  • space power plant
  • droplet generator
  • fluid collector
  • coolant circulation contour closing