Skip to main content
Log in

Numerical simulation of heat and mass transfer processes in the nozzle and expansion unit of the separator–steam-generator system in waste-heat utilization complex

  • Heat and Mass Transfer and Properties of Working Materials
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

Homogeneous equilibrium and nonequilibrium (relaxation) models are used to simulate flash boiling flows in nozzles. The simulation were performed using the author’s CFD-code ANES. Existing experimental data are used to test the realized mathematical model and the modified algorithms of ANES CFD-code. The results of test calculations are presented, together with data obtained for the nozzle and expansion unit of the steam generator and separator in the waste-heat system at ZAO NPVP Turbokon. The SIMPLE algorithm may be used for the transonic and supersonic flashing liquid flow. The relaxation model yields better agreement with experimental data regarding the distribution of void fraction along the nozzle axis. For the given class of flow, the difference between one- and two-dimensional models is slight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.A. Fedorov, O.O. Mil’man, D.V. Fedorov, and A.M. Trinoga, Energy Saving Technology of Electrical Energy Production at Natural Gas Swapping through Pipeline System (Mos. Gos. Tekhn. Univ., Moscow, 2011) [in Russian].

    Google Scholar 

  2. V. P. Skripov, Metastable Liquid (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  3. M. E. Deich and G. A. Filippov, Gas Dynamics of TwoPhase Media (Energiya, Moscow, 1968) [in Russian].

    Google Scholar 

  4. V. A. Zysin, G. A. Baranov, V. A. Barilovich, and T. N. Parfenova, Boiling Adiabatic Flows (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  5. M. Alamgir and J. H. Lienhard, “Correlation of pressure undershoot during hot-water de-pressurization,” J. Heat Transfer 103, 52–55 (1981). doi: 10.1115/1.3244429

    Article  Google Scholar 

  6. A. A. Avdeev, V. N. Maidanik, and V. K. Shanin, “Method of calculation of boiling adiabatic flows,” Teploenergetika, No. 8, 67–69 (1977).

    Google Scholar 

  7. A. A. Avdeev, V. N. Maidanik, L. I. Seleznev, and V. K. Shanin, “Calculation of critical outlay at outflow of saturated and underheated water through cylindrical channel,” Teploenergetika, No. 4, 36–38 (1977).

    Google Scholar 

  8. D. P. Schmidt, S. Gopalakrishnan, and H. Jasak, “Multi-dimensional simulation of thermal non-equilibrium channel flow,” Int. J. Multiphase Flow 36, 284–292 (2010). doi: 10.1016/j.ijmultiphaseflow.2009.11.012

    Article  Google Scholar 

  9. V. N. Blinkov, O. C. Jones, and B. I. Nigmatulin, “Nucleation and flashing in nozzles-2. Comparison with experiments using a five-equation model for vapor void development,” Int. J. Multiphase Flow 19, 965–986 (1993). doi: 10.1016/0301-9322(93)90072-3

    Article  MATH  Google Scholar 

  10. T. S. Shin and O. C. Jones, “Nucleation and flashing in nozzles-1. A distributed nucleation model,” Int. J. Multiphase Flow 19, 943–964 (1993). doi: 10.1016/03019322(93)90071-2

    Article  MATH  Google Scholar 

  11. K. I. Soplenkov and V. N. Blinkov, “Heterogeneous nucleation in the flow of superheated liquid,” in Multi-Phase Systems: Transient Flows with Physical and Chemical Transformation, ed. by B. I. Nigmatulin and A. I. Ivandayev, (Mos. Gos. Univ., Moscow, 1983), pp. 105–109.

    Google Scholar 

  12. EPRI The Marviken Full Scale Critical Flow Tests. Vol. 1. Summary Report EPRI Report NP-2370, 1982.

  13. N. Abuaf, B. J. C. Wu, G. A. Zimmer, and P. Saha, Study of Non-Equilibrium Flashing of Water in a Converging-Diverging Nozzle. Vol. 1: Experimental Brookhaven Nat. Lab., Upton, New York (1981).

    Google Scholar 

  14. B. A. Kol’chugin, L. R. Kevorkov, and R. I. Soziev, “Study of cavitation mechanism in water flow in the 125–250°C temperature range,” in Heat Transfer and Hydrodynamics in Power Engineering (ENIN, Moscow, 1976) [in Russian].

    Google Scholar 

  15. P. Downar-Zapolski, Z. Bilicki, L. Bolle, and J. Franco, “The non-equilibrium relaxation model for one-dimensional flashing liquid flow,” Int. J. Multiphase Flow 22, 473–483 (1996). doi: 10.1016/03019322(95)00078-X

    Article  MATH  Google Scholar 

  16. J. L. Xu, T. K. Chen, and X. J. Chen, “Critical flow in convergent-divergent nozzles with cavity nucleation model,” Exper. Therm. Fluid Sci. 14, 166–173 (1997). doi: 10.1016/S0894-1777(96)00055-6

    Article  Google Scholar 

  17. B. E. Launder, “Second-moment closure and its use in modeling turbulent industrial flows,” Int. J. Numerical Methods in Fluids 9, 963–985 (1989).

    Article  MathSciNet  Google Scholar 

  18. S. Patankar, Numerical Heat Transfer and Fluid Flow (CRC, 1980).

    MATH  Google Scholar 

  19. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics (Springer-Verlag, Berlin, 1995).

    Google Scholar 

  20. R. I. Issa, “Solution of implicitly discretised fluid flow equations by operator-splitting,” J. Compt. Phys. 62, 40–65 (1986). doi: 10.1016/0021-9991(86)90099-9

    Article  MATH  MathSciNet  Google Scholar 

  21. OpenFOAM. The Open Source CFD Toolbox. User Guide. Version 2.4.0, 2015. http://foam.sourceforge.net/docs/Guides-a4/UserGuide.pdf

  22. Ansys Fluent 12.0 Theory Guide (Ansys, 2009).

  23. K. C. Karki and S. V. Patankar, “Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations,” AIAA J. 27, 1167–1174 (1989). doi: 10.2514/3.10242

    Article  Google Scholar 

  24. I. Demirdzic, Z. Lilek, and M. Peric, “A collocated finite volume method for predicting flows at all speeds,” Int. J. Numer. Methods in Fluids 16, 1029–1050 (1993). doi: 10.1002/fld.1650161202

    Article  MATH  Google Scholar 

  25. R. I. Issa and P. J. Oliveira, “Numerical prediction of phase-separation in 2-phase flow-through t-junctions,” Compt. Fluids 23, 347–372 (1994).

    Article  MATH  Google Scholar 

  26. D. B. Spalding, Mathematical Modeling of Fluid Mechanics, Heat Transfer and Mass Transfer Processes, Report HTS/80/1 (Imperial College of Science, Technology and Medecine, London. 1980). http://www.cham.co.uk/phoenics/d_polis/d_lecs/numerics/hts80-1.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Minko.

Additional information

Original Russian Text © V.I. Artemov, K.B. Minko, G.G. Yan’kov, 2015, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemov, V.I., Minko, K.B. & Yan’kov, G.G. Numerical simulation of heat and mass transfer processes in the nozzle and expansion unit of the separator–steam-generator system in waste-heat utilization complex. Therm. Eng. 62, 897–905 (2015). https://doi.org/10.1134/S0040601515120010

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601515120010

Keywords

Navigation