Skip to main content
Log in

Heterogeneous mechanisms governing formation of droplets in atomizing superheated liquid by a spray atomizer

  • Heat and Mass Transfer and Properties of Working Fluids and Materials
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

The effects of increasing the jet expansion angle, decreasing droplet sizes, and forming a bimodal spectrum of droplets in atomizing superheated liquid by a spray atomizer are discussed. Condensation is adopted to be the mechanism governing the formation of a smaller-size fraction, and atomization enhanced by superheating is adopted to be the mechanism governing the formation of a larger-size fraction. Formulas for calculating the droplet diameter and the jet expansion angle are obtained. It is demonstrated that the calculated and experimentally determined droplet sizes are in satisfactory agreement with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Polanco, A. E. Holdo, and G. Munday, “General review of flashing jet studies,” J. Hazard. Mater. 173, 2–18 (2010).

    Article  Google Scholar 

  2. Handbook of Atomization and Spray (Springer, 2011).

  3. L. A. Dombrovskii, V. I. Zalkind, Yu. A. Zeigarnik, D. V. Marinichev, V. L. Nizovskii, A. A. Oksman, and K. A. Khodakov, “Atomization of superheated water: Results from experimental studies,” Therm. Eng. 56(3), 191 (2009)

    Article  Google Scholar 

  4. Z. Liu and A. K. Kim, “A review of water mist fire suppression systems — fundamental studies,” J. Fire Protect. Eng. 10(3), 32–50 (2000).

    MathSciNet  Google Scholar 

  5. O. Miyatake, Y. Koito, K. Tagava, and Y. Maruta, “Transient characteristics and performance of a novel desalination system based on heat storage and spray flashing,” Desalination 137, 157–166 (2001).

    Article  Google Scholar 

  6. L.-J. Guo, G.-J. Li, B. Chen, X.-J. Chen, D. D. Papailiou, and T. Panidis, “Study on gas-liquid two-phase spraying characteristics of nozzles for the humidification of smoke,” Exp. Therm. Fluid Sci. 26, 715–722 (2002).

    Article  Google Scholar 

  7. V. B. Alekseev, V. I. Zalkind, Yu. A. Zeigarnik, D. V. Marinichev, V. L. Nizovskii, L. V. Nizovskii, A. A. Oksman, N. N. Silina, and K. A. Khodakov, “Evolution of a superheated water spray in air flow,” Therm. Eng. 57(3), 207 (2010).

    Article  Google Scholar 

  8. A. S. Lushevskii, Processes of Fuel Atomization by Diesel Injectors (GNTI Mashinostr. Lit., Moscow, 1963) [in Russian].

    Google Scholar 

  9. R. D. Reitz, “A photographic study of flash-boiling atomization,” Aerosol Sci. Technol. 12, 561–569 (1990).

    Article  Google Scholar 

  10. D. G. Pazhi, A. M. Prakhov, and B. B. Ravikovich, Atomizers in the Chemical Industry (Khimiya, Moscow, 1971) [in Russian].

    Google Scholar 

  11. V. E. Vinogradov, Studying the Flashing of Superheated and Stretched Liquids, Doctoral Dissertation in Technical Sciences (Yekaterinburg, 2006).

    Google Scholar 

  12. P. A. Pavlov and O. A. Isaev, “Barocapillary instability of the superheated liquid jet surface,” Teplofiz. Vys. Temp. 22(4), 745–752 (1984).

    Google Scholar 

  13. P. A. Pavlov, “Hydrodynamics of metastable liquid,” in Proceedings of Ural Branch, Ross. Acad. of Sci. “Metastable States and Phase Transitions,” (Yekaterinburg, 2006), Issue 6, pp. 162–171.

    Google Scholar 

  14. E. Sher, T. Bar-Kohany, and A. Rashkovan, “Flashboiling atomization,” Progr. Energy Comb. Sci. 34, 417–439 (2008).

    Article  Google Scholar 

  15. V. M. Polyaev, B. V. Kichatov, and I. V. Boiko, “Outflow of overheated liquid stream to the atmosphere,” High Temperature 36(1), 98–101 (1998).

    Google Scholar 

  16. D. A. Khlestkin and V. N. Kanishev, “Typical hot water outflow mechanisms,” Therm. Eng. 24(8) (1977).

    Google Scholar 

  17. E. Sher and M. Levi, “Spray formation from homogeneous flash-boiling liquid jets,” in Proceedings of ILASS-Europe-2010: 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, 2010, No. 169.

  18. A. G. Amelin, Theoretical Principles of Mist Formation during Steam Condensation (Khimiya, Moscow, 1972) [in Russian].

    Google Scholar 

  19. D. A. Labuntsov, Physical Principles of Power Engineering. Selected Works on Heat Transfer, Hydrodynamics, and Thermodynamics (MEI, Moscow, 2000) [in Russian].

    Google Scholar 

  20. A. Prospetti and M. S. Plesset, “The stability of an evaporating liquid surface,” Phys. Fluids 27(7), 1590–1602 (1984).

    Article  Google Scholar 

  21. V. G. Levich, Physicochemical hydrodynamics (Englewood Cliffs, N.J., Prentice-Hall, 1962).

    Google Scholar 

  22. Yu. A. Stepanyants and A. L. Fabrikant, “Propagation of waves in hydrodynamic shear flows,” Physics-Uspekhi (Advances in Physical Sciences 32, 783–805 (1989).

    Google Scholar 

  23. V. E. Nakoryakov, B. G. Pokusaev, and I. R. Shreiber, Wave Dynamics of Gas- and Vapor-Liquid Media (Energoatomizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  24. P. K. Senecal, D. P. Schmidt, I. Nouar, C. J. Rutland, R. D. Reitz, and M. L. Corradini, “Modeling high-speed viscous liquid sheet atomization,” Int. J. Multiphase Flow 25, 1073–1097 (1999).

    Article  MATH  Google Scholar 

  25. Y. Liao, A. T. Sakman, S. M. Jeng, M. A. Jog, and M. A. Benjamin, “A comprehensive model to predict simplex atomizer performance,” Trans. ASME, J. Eng. Gas Turb. Power 121, 285–294 (1999).

    Article  Google Scholar 

  26. O.G. Bakunin, “Reconstruction of streamline topology, and percolation models of turbulent transport,” Physics-Uspekhi (Advances in Physical Sciences) 56, 243–260 (2013).

    Google Scholar 

  27. A. D. Polyanin and V. V. Dil’man, “New approximate analytic methods of investigating problems of physicochemical mechanics,” J. engineering physics and thermophysics 46, 295–302 (1984).

    Article  Google Scholar 

  28. H. E. Snyder, D. W. Senser, and A. H. Lefebvre, “Mean Drop Sizes From Fan Spray Atomizers,” Trans. ASME, J. Fluids Engineering 111(3), 342–347 (1989).

    Article  Google Scholar 

  29. R. Brown and J. L. York, “Sprays formed by flashing liquid jets,” AIChE J. 8(2), 149–153 (1962).

    Article  Google Scholar 

  30. T. Gemsi, N. Chigier, K. Yakut, and T. C. Ho, “Experimental study of flash atomization of binary hydrocarbon liquids,” Int. J. Multiphase Flow 30, 395–417 (2004).

    Article  Google Scholar 

  31. H. W. M. Witlox, M. Harper, P. J. Bowen, and V. M. Cleary, “Flashing liquid jets and two-phase droplet dispersion: II. Comparison and validation of droplet size and rainout formulations,” J. Hazard. Mater. 142, 797–809 (2007).

    Article  Google Scholar 

  32. B. Zuo, A. M. Gomes, and C. J. Rutland, “Modeling superheated fuel sprays and vaporization,” Int. J. Engine Res. 1(4), 321–336 (2000).

    Article  Google Scholar 

  33. R. D. Reitz, Spray Technology Short Course. Computer Modeling of Sprays [Electronic resource]. Mode of access: http://www.erc.wisc.edu/documents/Short-course-1-7.pdf. Date of access: 05.05.2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sorokin.

Additional information

Original Russian Text © V.V. Sorokin, 2015, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, V.V. Heterogeneous mechanisms governing formation of droplets in atomizing superheated liquid by a spray atomizer. Therm. Eng. 62, 196–201 (2015). https://doi.org/10.1134/S004060151502010X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004060151502010X

Keywords

Navigation