Skip to main content
Log in

Analyzing the aerodynamic structure of swirl flow in vortex burner models

  • Steam Boilers, Power-Plant Fuel, Burner Devices, and Auxiliary Equipment of Boilers
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

The article presents the results from experimental and numerical investigations of the parameters characterizing large-scale vortex structures formed in the models of various burners with flow swirling. The experiments included flow visualization and velocity field measurements carried out using a modern contact-less diagnostic system constructed on the basis of a laser Doppler anemometer. In addition, the frequency responses of unsteady vortex flow modes were investigated using dedicated acoustic sensors. The distribution of static pressure induced by an unsteady vortex was obtained using the phase averaging method. Along with experiments, the swirl flow parameters were calculated using an analytic theory and the Star CCM+ commercial software package. The adequacy of the mathematical modeling results was checked by comparing them with the physical experiment data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Kutateladze, D. N. Lyakhovskii, and V. A. Permyakov, Modeling of Thermal Power Equipment (Energiya, Moscow, 1966) [in Russian].

    Google Scholar 

  2. I. L. Povkh, Aerodynamic Experiment in Machinery Construction (Mashinostroenie, Leningrad, 1974) [in Russian].

    Google Scholar 

  3. S. S. Kutateladze, Similarity Analysis in Thermal Physics (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  4. B. P. Ustimenko, B. K. Aliyarov, and E. K. Abubakirov, Fire Modeling of Pulverized-Coal Furnaces (Nauka, Alma-Ata, 1982) [in Russian].

    Google Scholar 

  5. V. M. Lyakhter and A. M. Prudovskii, Hydraulic Modeling (Energoatomizdat, Moscow, 1984) [in Russian].

    Google Scholar 

  6. E. Kh. Verbovetskii, V. V. Osintsev, V. N. Tochilkin, P. I. Matyukhin, and Yu. L. Marshak, “Studying the aerodynamics and recirculation of gases to the top of P-67 boiler furnace chamber on a fire model,” Therm. Eng., No. 7 (1981).

    Google Scholar 

  7. I. L. Shrader and V. V. Shilov, “Fire modeling of the P-67 boiler furnace device,” Therm. Eng., No. 1, (1981).

    Google Scholar 

  8. V. N. Verzakov, V. G. Meshcheryakov, and Yu. L. Marshak, “Studying the aerodynamics in the P-67 boiler furnace,” Sib. Fiz.-Tekhn. Zh., No. 5, 96–101 (1991).

    Google Scholar 

  9. V. K. Migai, Modeling of Heat-Transfer Power Equipment (Energoatomizdat, Moscow, 1987) [in Russian].

    Google Scholar 

  10. N. Modlinski, “Computational modeling of a utility boiler tangentially-fired furnace retrofitted with swirl burners,” Fuel Process. Technol., No. 11, 1601–1608 (2010).

    Google Scholar 

  11. S. V. Alekseenko, A. P. Burdukov, A. A. Dekterev, D. M. Markovich, and S. I. Shtork, “Physical and mathematical simulation of aerodynamics and combustion in the furnace chambers of power installations,” Therm. Eng. 58(9), 779 (2011).

    Article  Google Scholar 

  12. C. Duwig and L. Fuchs, “Large eddy simulation of vortex/breakdown/flame interaction,” Phys. Fluids 19, 075103 (2007).

    Article  Google Scholar 

  13. A. K. Gupta, D. G. Lilley, and N. Syred, Swirl Flows (Abacus Press, Cambridge, 1984; Mir, Moscow, 1987).

    Google Scholar 

  14. D. Froud, T. O’Doherty, and N. Syred, “Phase averaging of the precessing vortex core in a swirl burner under piloted and premixed combustion conditions,” Comb. and Flame 100, 407–412 (1995).

    Article  Google Scholar 

  15. S.V. Alekseenko, P.A. Kuibin, V.L. Okulov, Theory of Concentrated Vortices: An Introduction (Springer-Verlag, Berlin, Heidelberg, 2007; Inst. of Thermophysics, Siberian Div. Russ. Akad. of Sci., Novosibirsk, 2003).

    Google Scholar 

  16. S. V. Alekseenko, P. A. Kuibin, V. L. Okulov, and S. I. Shtork, “Helical vortices in swirl flow,” J. Fluid Mech. 382, 195–243 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  17. N. Syred, “A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems,” Progr. Energy Combust. Sci. 32(2), 93–161 (2006).

    Article  Google Scholar 

  18. C. E. Cala, E. C. Fernandes, M. V. Heitor, and S. I. Shtork, “Coherent structures in unsteady swirling jet flow,” Exp. Fluids 40(2), 267–276 (2006).

    Article  Google Scholar 

  19. V.L. Okulov, I.V. Naumov, J.N. Sørensen, “Vortex triplet,” Doklady Physics 51(7), 388–392 (2006).

    Article  MATH  Google Scholar 

  20. J. Jeong and F. Hussain, “On the identification of a vortex,” J. Fluid Mech. 285, 69–94 (1995).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Gesheva.

Additional information

Original Russian Text © E.S. Gesheva, I.V. Litvinov, S.I. Shtork, S.V. Alekseenko, 2014, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gesheva, E.S., Litvinov, I.V., Shtork, S.I. et al. Analyzing the aerodynamic structure of swirl flow in vortex burner models. Therm. Eng. 61, 649–657 (2014). https://doi.org/10.1134/S0040601514090055

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601514090055

Keywords

Navigation