Skip to main content
Log in

Experimental and numerical simulation for swirl flow in a combustor

  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

Results of the experimental and numerical simulation for swirl flow in combustion of a lean methane-air mixture in a model combustor at atmospheric pressure are represented. The panoramic method for the flow velocity measurement and the calculation by a large eddy method were used for the investigation of the nonstationary turbulent flow. The numerical modeling for the breakdown of the vortex core of the flow and the topology of large-scale vortex structures forming in it showed the close fit to the experiment. The analysis of obtained data showed that for the case of the intensive swirl of the flow as well as in the case of the flow without combustion, dynamics of the flow with combustion was determined by the global azimuthal instability mode corresponding to the intensive precession of the vortex core. The flame had the similar characteristics of the stability and compactness in the case of stabilization by the low swirl; however, velocity pulsations in the flow corresponded to the development of only local instability modes. Thus, the other kind of vortex breakdown in the case of the low swirl, for which the central recirculation zone is lacking, is not only favorable in view of the reduction of the NO x emission, but also remains a possibility for the effective use of the active control method for the flow and combustion. In particular, the given result may be used for the elimination of the thermoacoustic resonance in combustors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Gupta, D. G. Lilley, and N. Syred, Swirl Flows (Abacus Press, Kent, 1984).

    Google Scholar 

  2. N. Syred, N. A. Chigier, and J. M. Beér, “Flame stabilization in recirculation zones of jets with swirl,” Proc. Combust. Inst. 13, 617–624 (1971).

    Google Scholar 

  3. N. Syred and J. M. Beér, “Combustion in Swirling Flow: A Review,” Combust. Flame 23, 143–201 (1974).

    Article  Google Scholar 

  4. R. Weber and J. Dugué, “Combustion accelerated swirling flows in high confinements,” Prog. Energy Combust. Sci. 18, 349–367 (1992).

    Article  Google Scholar 

  5. R. R. Tacina, “Combustor technology for future aircraft,” in Proc. 26th AIAA/SAE/ASME/ASEE Joint Propulsion Conf., (Orlando, Florida, USA, 16–18 July, 1990).

    Google Scholar 

  6. J. Warnatz, U. Maas, and R. W. Dibbl, Combustion. Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation (Springer, Berlin, 2001; Fizmatlit, Moscow, 2003).

    MATH  Google Scholar 

  7. S. M. Correa, “Power generation and aeropropulsion gas turbines: From combustion science to combustion technology,” Proc. Combust. Inst. 27, 1793–1807 (1998).

    Google Scholar 

  8. A.H. Lefebvre, Gas Turbine Combustion (Taylor & Francis, Philadelphia, 1999).

    Google Scholar 

  9. T. Lieuwen, H. Torres, C. Johnson, and B. T. Zinn, “A mechanism of combustion instability in lean premixed gas turbine combustors,” J. Eng. Gas Turbines and Power 123, 182–189 (2001).

    Article  Google Scholar 

  10. D. Dunn-Rankin, Lean Combustion: Technology and Control (Academic Press, 2008).

    Google Scholar 

  11. R. K. Cheng, Low Swirl Combustion. In the Gas Turbine Handbook (DOE, Washington, DC, 2006).

    Google Scholar 

  12. R. K. Cheng et al., Low-swirl combustion. An ultra-low emissions technology for industrial heating and gas turbines, and its potential for hydrogen turbines (Combustion Technologies Group Environmental Energy Technologies Div. Lawrence Berkeley Nation. Lab. Berkeley, CA, LBNL. DOE-FE. EPRI. Webcast, vol. 8, 2006).

    Google Scholar 

  13. M. Konle, F. Kiesewetter, and T. Sattelmayer, “Simultaneous high repetition rate PIV-LIF measurements of CIVB driven flashback,” Exp. Fluids 44, 529–538 (2008).

    Article  Google Scholar 

  14. W. Meier, X. R. Duan, and P. Weigand, “TemperaturMessungen in turbulenten Drall-flammen: Thermoelemente im Vergleich zu Laser-Raman-Streuung,” Gaswärme Int. 53, 153–158 (2004).

    Google Scholar 

  15. W. Stricker, “Measurement of temperature in laboratory flames and practical devices,” in Applied Combustion Diagnostics, Ed. by K. Kohse-Hohinghaus and J.B. Jeffriesin (Taylor & Francis, New York, 2002), pp. 155–193.

    Google Scholar 

  16. R. J. Adrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39, 159–169 (2005).

    Article  Google Scholar 

  17. T. Echekki and E. Mastorakos, Turbulent Combustion Modeling: Advances. New Trends and Perspectives (Springer, Berlin, 2011).

    Book  Google Scholar 

  18. S. V. Alekseenko, P. A. Kuibin, and V. L. Okulov, Theory of Concentrated Vortices: An Introduction (Springer, Berlin, 2007).

    Google Scholar 

  19. P. Billant, J.-M. Chomaz, and P. Huerre, “Experimental study of vortex breakdown in swirling jets,” J. Fluid Mech. 376, 183–219 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Liang and T. Maxworthy, “An experimental investigation of swirling jets,” J. Fluid Mech. 525, 115–159 (2005).

    Article  MATH  Google Scholar 

  21. D. Mourtazin and J. Cohen, “The effect of buoyancy on vortex breakdown in a swirling jet,” J. Fluid Mech. 571, 177–189 (2007).

    Article  MATH  Google Scholar 

  22. M. P. Tokarev, D. M. Markovich, and A. V. Bil’skii, “Adaptive algorithms of processing of particle images for computation of instant velocity fields,” Vychisl. Technol. 2, 1–23 (2007).

    Google Scholar 

  23. D. M. Markovich and M. P. Tokarev, “Algorithms of reconstruction of three-component velocity field in the Stereo PIV method,” Vychisl. Metody Program. 9, 311–326 (2008).

    Google Scholar 

  24. V. M. Dulin, Yu. S. Kozorezov, and D. M. Markovich, and M. P. Tokarev, “Investigation of the gasdynamic flow structure in the swirling turbulent flame by the method of digital tracer visualization,” Vestn. NGU. Ser. Fizika 4, 30–42 (2009).

    Google Scholar 

  25. B. F. Magnussen, “The eddy dissipation concept” in Proceedings of 11th Task Lleaders Meeting on Energy Conservation in Combustion (Lund, Sweden, 1989) pp. 248–268.

    Google Scholar 

  26. A. Yu. Snegirev and A. S. Frolov, “Computation of the turbulent diffusion flame by the large eddy method,” Teplofiz. Vys. Temp. 49, 713–728 (2011) [High Temp. 49 (5), 690–703 (2011)].

    Google Scholar 

  27. M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “Dynamic subgrid-scale eddy viscosity model” in Summer Workshop. Center for Turbulence Research (Stanford, CA, 1996).

    Google Scholar 

  28. K. Oberleithner, M. Sieber, C. N. Nayeri, et al. “Threedimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction,” J. Fluid Mech. 679 383–414 (2011).

    Article  MATH  Google Scholar 

  29. C. E. Cala, E. C. Fernandes, M. V. Heitor, and S. I. Shtork, “Coherent structures in unsteady swirling jet flow,” Exp. Fluids 40 267–276 (2006).

    Article  Google Scholar 

  30. I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Temporally resolved planar measurements of transient phenomena in a partially premixed swirl flame in a gas turbine model combustor,” Combust. Flame 157, 1510–1525 (2010).

    Article  Google Scholar 

  31. S. V. Alekseenko, V. M. Dulin, Yu. S. Kozorezov, et al., “Effect of high-amplitude forcing on turbulen combustion intensity and vortex core precession in a strongly swirling lifted propane-air flame,” Combust. Sci. Technol. 2012. DOI:10.1080/00102202.2012.695239.

    Google Scholar 

  32. J. Jeong and F. Hussain, “On the identification of a vortex,” J. Fluid Mech. 285, 69–94 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  33. S. V. Alekseenko, V. M. Dulin, Yu. S. Kozorezov, et al., “Flow structure of swirling turbulent propane flames,” Flow, Turbul. Combust. 87, 569–595 (2011).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.M. Dulin, D.M. Markovich, A.V. Minakov, K. Hanjalic, L.M. Chikishev, 2013, published in Izvestiya RAN. Energetika.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dulin, V.M., Markovich, D.M., Minakov, A.V. et al. Experimental and numerical simulation for swirl flow in a combustor. Therm. Eng. 60, 990–997 (2013). https://doi.org/10.1134/S004060151313003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004060151313003X

Keywords

Navigation