Skip to main content
Log in

Using fundamental equations of state for calculating the thermodynamic properties of normal undecane

  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

The modern fundamental equations of state are analyzed together with methods of applying them for calculating the thermodynamic properties of technically important substances. Two kinds of fundamental equations of state (with 12 and 14 terms) are obtained for normal undecane (n-undecane), which is a technically important organic working substance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Span, Multiparameter Equation of State: An Accurate Source of Thermodynamic Property Data (Springer, Berlin, 2000).

    Google Scholar 

  2. D. S. Kurumov, The Thermal Properties of n-Alkanes and Fractions of Mangyshlak Petroleum in Liquid and Gaseous States, Doctoral Dissertation in Technical Sciences (Grozny Petroleum Institute, Grozny, 1991).

    Google Scholar 

  3. K. N. Marsh, R. C. Wilhoit, M. Frenkel, and D. Yin, TRC Thermodynamic Properties of Substances in the Ideal Gas State (Thermodynamics Research Center, 1994).

  4. L. Sun and J. E. Ely, “Universal Equation of State for Engineering Application: Algorithm and Application,” Fluid Phase Equilibria 222–223, 107–118 (2004).

    Article  Google Scholar 

  5. R. Fletcher, A Modified Marquardt Subroutine for Non-Linear Least Squares, (Atomic Energy Research Establishment, Harwell, Berkshire (R.6799), May 1971), pp. 1–24.

    Google Scholar 

  6. E. W. Lemmon and R. T. Jacobsen, “A New Functional Form and New Fitting Techniques for Equations of State with Application to Pentafluoroethane (HFC-125),” J. Phys. Chem. Ref. Data 34(1), 6–108 (2005).

    Article  Google Scholar 

  7. F. Krafft, “On Nineteen Higher Normal Paraffins and a Simple Volume Law for Liquids That Form Drops. I,” Ber. Dtsch. Chem. Ges. 15(1), 1687–1711 (1882).

    Article  Google Scholar 

  8. C. Viton, M. Chavret, E. Behar, and J. Jose, “Vapor Pressure of Normal Alkanes from Decane to Isosane at Temperatures from 244 K to 469 K and Pressures from 0.4 Pa to 164 kPa,” Int. Electron. J. Phys. Chem. Data 2, 215–224 (1996).

    Google Scholar 

  9. I. S. Aleksandrov, A. A. Gerasimov, and E. B. Grigor’ev, “Evaporation Enthalpy and Saturated Vapor Pressure of C5-C18 n-Alkanes Near the Triple Point,” Obor. Kompl. Nauchno-Tekhn. Progr. Rossii, No. 4, 56–61 (2010).

  10. P. A. Chmykhalo, DSSDD (Ukrainian State Standard) 7-2005: The Procedure for Calculating the Saturated Vapor Pressure of n-Alkanes (C 1-C 100 ) and Hydrogen on the Boiling Line (Derzhspozhivstandard Ukrainy, Kiev, 2005).

    Google Scholar 

  11. J. S. Stadnicki, “Tonometric Investigations of Binary and Ternary Azeotropes. IV. Binary System Aniline-n-Undecane,” Bull. Acad. Polon. Sci., Ser. Sci. Chem. 10, 299–301 (1962).

    Google Scholar 

  12. E. C. Bingham and H. J. Fornwalt, “Chemical Constitution and Association,” J. Rheology 1(4), 372–417 (1930).

    Article  Google Scholar 

  13. R. W. Dornte and C. P. Smyth, “The Dielectric Polarization of Liquids. X. The Polarization and Refraction of the Normal Paraffins,” J. Amer. Chem. Soc. 52, 3546–3552 (1930).

    Article  Google Scholar 

  14. G. Calingaert, H. A. Beatty, R. C. Kuder, and G. W. Thomson, “Homologous Series of Alkanes Density and Its Temperature Coefficient,” Ind. and Eng. Chem. 33(1), 103–106 (1941).

    Article  Google Scholar 

  15. O. R. Quayle, R. A. Day, and G. M. Brown, “A Study of Organic Parachors. VII. A Series of Saturated Hydrocarbons,” J. Amer. Chem. Soc. 66, 938–941 (1944).

    Article  Google Scholar 

  16. A. I. Vogel, “Physical Properties and Chemical Constitution. Part IX. Aliphatic Hydrocarbons,” J. Chem. Soc. 146, 133–139 (1946).

    Article  Google Scholar 

  17. A. K. Doolittle and R. H. Peterson, “Preparation and Physical Properties of a Series of n-Alkanes,”J. Amer. Chem. Soc. 73, 2145–2151 (1951).

    Article  Google Scholar 

  18. A. K. Doolittle, “Specific Volumes of n-Alkanes,” J. Chem. Eng. Data 9(2), 275–279 (1964).

    Article  Google Scholar 

  19. D. L. Camin and F. D. Rossini, “Physical Properties of 14 American Petroleum Institute Research Hydrocarbons, C(9) to C(15),” J. Phys. Chem. 59(11), 1173–1179 (1955).

    Article  Google Scholar 

  20. J. A. Dixon, “Phase Equilibria Molecular Transport Thermodynamics. Part I. Binary Solutions of Saturated Hydrocarbons,” J. Chem. Eng. Data 4(4), 289–294 (1959).

    Article  Google Scholar 

  21. V. G. Ben’kovskii, M. K. Naurusov, T. M. Bog- oslovskaya, and Z. Serikov, “Density of Binary Mixtures of n-Alkanes,” Trans. Inst. Khim. Neft. Prir. Solei, Akad. Nauk Kaz. SSR, No. 1, 16–19 (1970).

  22. J. G. Hust and R. E. Schramm, “Density and Crystallinity Measurements of Liquid and Solid n-Undecane, n-Tridecane, and o-Xylene from 200 to 350 K, J. Chem. Eng. Data 21(1), 7–12 (1976).

    Article  Google Scholar 

  23. P. M. Diaz and G. Tardajos, “Isothermal Compressibilities of n-Alkanes and Benzene,” J. Chem. Thermodyn. 10(1), 19–24 (1978).

    Article  Google Scholar 

  24. R. Landau and A. Wuerflinger, “PVT Data of Acetonitrile, Undecane, and Dodecane to 3 kbar and −50°C. Pressure Dependence and Change of Volume, Enthalpy, and Entropy,” Ber. Bunsenges. Phys. Chem. 84, 895–902 (1980).

    Google Scholar 

  25. M. Garcia, C. Rey, V. P. Villar, and J. R. Rodrigues, “Excess Volumes of (n-Heptane + n-Undecane) between 288.15 and 308.15 K,” J. Chem. Thermodyn. 18(6), 551–554 (1986).

    Article  Google Scholar 

  26. L. D. Mansker, A. C. Criser, A. Jangkamolkulchai, and K. D. Luks, “The Isothermal Compressibility of n-Paraffin Liquids at Low Pressures,” Chem. Eng. Comm. 57(6), 87–93 (1987).

    Article  Google Scholar 

  27. J. Ortega, J. S. Matos, J. A. Pena, et al., “Isobaric Expansivities of the Binary Mixtures C3H7(OH) + CnH2n + 2 (n = 11, 12) between 288.15 and 318.15 K,” Thermochim. Acta 131(12), 57–64 (1988).

    Article  Google Scholar 

  28. J. Wu, Z. Shan, and A.-F.A. Asfour, “Viscometric Properties of Multicomponent Liquid n-Alkane Systems,” Fluid Phase Equilib. 143(12), 263–274 (1998).

    Article  Google Scholar 

  29. L. M. Casas, A. Tourino, B. Orge, et al., “Thermophysical Properties of Acetone or Methanol + n-Alkane (C9 to C12) Mixtures,” J. Chem. Eng. Data 47(4), 887–893 (2002).

    Article  Google Scholar 

  30. I. S. Aleksandrov and A. A. Gerasimov, “The Thermal Properties of Normal Undecane on the Saturation Line,” in Proceedings of the Seventh International Conference “Innovations in Science and Education-2009,” KGTU, Kaliningrad, 2009, pp. 65–67.

  31. H. M. Huffman, G. S. Parks, and M. Barmore, “Thermal Data on Organic Compounds. X. Further Studies on the Heat Capacities, Entropies, and Free Energies of Hydrocarbons,” J. Amer. Chem. Soc. 53(10), 3876–3888 (1931).

    Article  Google Scholar 

  32. H. L. Finke, M. E. Gross, G. Waddington, and H. M. Huffman, “Low-Temperature Thermal Data for the Nine Normal Paraffin Hydrocarbons from Octane to Hexadecane,” J. Amer. Chem. Soc. 76(2), 333–341 (1954).

    Article  Google Scholar 

  33. A. A. Gerasimov, The Caloric Properties of Normal Alkanes and Multicomponent Hydrocarbon Mixtures in Liquid and Gaseous Phases Including the Critical Region, Doctoral Dissertation in Technical Sciences (KGTU, Kaliningrad, 1999).

    Google Scholar 

  34. V. Majer and V. Svoboda, Enthalpies of Vaporization of Organic Compounds. A Critical Review and Data Compilation (Blackwell Sci. Publ., Oxford, 1985).

    Google Scholar 

  35. E. Moravetz, “A Non-Equilibrium Low Vapor Pressure Heat of Vaporization Calorimeter,” Acta Chem. Scand. 22(5), 1509–1531 (1968).

    Article  Google Scholar 

  36. A. Z. Golik and I. I. Ivanova, “The Molecular Structure, Density, Compressibility, and Viscosity of n-Alkanes in Liquid State,” Zh. Fiz. Khim. 36(12), 1768–1770 (1962).

    Google Scholar 

  37. Yu. A. Neruchev, V. V. Zotov, and N. F. Otpushchenkov, “Speed of Sound in the Homologous Series of n-Alkanes,” Zh. Fiz. Khim. 43(11), 1597–1599 (1969).

    Google Scholar 

  38. Yu. F. Melikhov, “Studying the Temperature and Baric Dependences of Ultrasound Velocity in Polyatomic Liquids,” in Ultrasound and Thermodynamic Properties of Substance (Kursk Gos. Ped. Inst., Kursk, 1985), pp. 81–103.

    Google Scholar 

  39. G. Tardajos, M. D. Pena, and E. Aicart, “Speed of Sound in Pure Liquids by a Pulse-Echo-Overlap Method,” J. Chem. Thermodyn. 18(7), 683–689 (1986).

    Article  Google Scholar 

  40. F. Plantier, J.-L. Daridon, B. Lagourette, and C. Boned, “Isoentropic Thermophysical Properties of Pure n-Paraffins as a Function of Temperature and Chain Length,” High Temp. High Press. 32(3), 305–310 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.S. Aleksandrov, A.A. Gerasimov, B.A. Grigor’ev, 2011, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrov, I.S., Gerasimov, A.A. & Grigor’ev, B.A. Using fundamental equations of state for calculating the thermodynamic properties of normal undecane. Therm. Eng. 58, 691–698 (2011). https://doi.org/10.1134/S0040601511080027

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601511080027

Keywords

Navigation