Skip to main content
Log in

Critical properties of aqueous solutions. P. II

  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

Results from a detailed study are presented in which we analyzed the shape of critical lines of binary aqueous solutions like H2O + common salt and H2O + hydrocarbon. We also present the results from a comparative analysis of data on the critical parameters of such solutions reported in the literature. The critical lines of the solutions are analyzed in different projections. Accuracy, reliability, and consistency of the data considered are estimated, and recommendations on using them for scientific and practical purposes are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. R. Krichevskii, “The Thermodynamics of Critical Phenomena in Infinitely Diluted Binary Solutions,” Zh. Fiz. Khim. 41, 1332–1343 (1967).

    Google Scholar 

  2. P. H. von Konynenburg and P. L. Scott, “Critical Lines and Phase Equilibria in Binary Van der Waals Mixtures,” Philos. Trans. Roy. Soc. London A. 298, 495–540 (1980).

    Article  Google Scholar 

  3. D. S. Tsyklis and L. A. Rott, “Phase Equilibrium between Two Immiscible Gaseous Phases,” J. Chem. Rev., 351–361 (1967).

  4. A. A. Povodyrev, M. A. Anisimov, J. V. Senders, et al., Evaluation of the Critical Locus of Aqueous Solutions of Sodium Chloride, Technical Report to IAPWS, IPST (Univ. of Marylant at College Park, 1997).

  5. A. A. Povodyrev, M. A. Anisimov, J. V. Senders, et al., Guideline on Critical Locus of Aqueous Solutions of Sodium Chloride (IAPWS, Prague, 2000).

    Google Scholar 

  6. I. Kh. Khaibullin, B. Novikov, A. M. Copeliovich, and A. M. Besedin, “Phase Diagrams for Steam Solutions and Caloric Properties of Two-and Three-Component Systems: H2O + NaCl, H2O + Na2SO4, H2O + NaCl + Na2SO4,” in Water and Steam, Ed. by J. Straub and K. Scheffler (Pergamon Press, New York, 1979), pp. 641–647.

    Google Scholar 

  7. J. L. Bischoff, R. J. Rosenbauer, and K. S. Pitzer, “The System NaCl-H2O: Relations of Vapor-Liquid Near the Critical Temperature of Water and of the Vapor-Liquid-Halite from 300 to 500°C,” Geochim.et Cosmochim Acta. 50, 1437–1444 (1986).

    Article  Google Scholar 

  8. K. S. Pitzer, J. L. Bischoff, and R. J. Rosenbauer, “Critical Behavior of Dilute NaCl in H2O,” Chem. Phys. Lett. 134, 30–63 (1986).

    Google Scholar 

  9. W. L. Marshall and E. V. Jones, “Liquid-Vapor Critical Temperatures of Aqueous Electrolyte Solutions,” J. Inorg. Nucl. Chem. 36, 2313–2318 (1974).

    Article  Google Scholar 

  10. A. I. Abdulagatov, G. V. Stepanov, and I. M. Abdulagatov, “Critical Properties of Aqueous Solutions. Part I. Experimental Data,” Teploenergetika, No. 8, 72–78 (2008) [Therm. Eng., No. 8 (2008)].

  11. A. I. Abdulagatov, G. V. Stepanov, and I. M. Abdulagatov, “Asymptotic Behaviors of the Thermodynamic Properties of Infinitely Diluted Aqueous Solutions Near the Critical Point of Pure Water,” in Ultrasound and Thermodynamic Properties of Substances (KGU, Kursk, 2007).

    Google Scholar 

  12. A. I. Viktorov, A. Fredenslund, and N. A. Smirnova, “Fluid Phase Equilibria in Water: Natural Gas Component Mixtures and Their Description by the Whole Group-Contribution Equation of State,” Fluid Phase Equilib. 66, 187–210 (1991).

    Article  Google Scholar 

  13. J. F. Connolly, “Solubility of Hydrocarbons in Water Near the Critical Temperature,” J. Chem. Eng. Data 11, 13–17 (1966).

    Article  Google Scholar 

  14. J. G. Roof, “Three-Phase Critical Point in Hydrocarbon-Water Systems,” J. Chem. Eng. Data 15, 301–303 (1970).

    Article  Google Scholar 

  15. Z. Alwani and G. M. Schneider, “Phase Equilibrium, Critical Phenomena, and pVT Data in Binary Mixtures of Water with Aromatic Hydrocarbons up to 2200 bar and 420°C,” Ber. Bunsenges. Phys. Chem. 73, 294–301 (1967).

    Google Scholar 

  16. A. L. Horvath, “References Literature to the Critical Properties of Aqueous Electrolyte Solutions,” J. Chem. Inf. Comput. Sci. 15, 245 (1975).

    Google Scholar 

  17. V. M. Valyashko, “Studies of Water-Salt Systems at Elevated Temperatures and Pressures,” Ber. Bunsenges. Phys. Chem. 81, 388 (1977).

    Google Scholar 

  18. V. M. Valyashko, “Phase Behavior in Binary and Ternary Water-Salt Systems at High Temperatures and Pressures,” Pure and Appl. Chem. 69, 2271 (1997).

    Article  Google Scholar 

  19. C. J. Barton, G. M. Hebert, and W. L. Marshall, “Aqueous Systems at High Temperature — II: Liquid-Liquid Immiscibility in the System UO3-SO3-N2O5-H2O above 300°C,” J. Inorg. Nucl. Chem. 21, 141–151 (1961).

    Article  Google Scholar 

  20. W. L. Marshall, E. V. Jones, G. M. Hebert, and F. J. Smith, “Aqueous Systems at High Temperature-VII: Liquid-Liquid Immiscibility and Critical Phenomena in the Systems UO3-SO3-H2O, UO3-SO3-D2O, and CuO-SO3-D2), 270–430°C,” J. Inorg. Nucl. Chem. 24, 995–1000 (1962).

    Article  Google Scholar 

  21. E. V. Jones and W. L. Marshall, “Aqueous Systems at High Temperature — XIII: Investigations on the System UO3-Li2O-SO3-D2O; Liquid-Liquid Immiscibility and Critical Phenomena, 300–410°C,” J. Inorg. Nucl. Chem. 26, 281–285 (1964).

    Article  Google Scholar 

  22. W. L. Marshall, J. S. Gill, and R. Slusher, “Aqueous Systems at High Temperature — VI: Investigations on the System NiO-SO3-H2O and Its D2O Analogue from 10−4 to 3 m SO3, 150–450°C, J. Inorg. Nucl. Chem. 24, 889–897 (1962).

    Article  Google Scholar 

  23. W. L. Marshall, R. Slusher, and F. J. Smith, “Aqueous Systems at High Temperature — IX: Investigations on the System Li2SO4-H2SO4-H2O and its D2O analogue, 200–470°C: Solubilities and Critical Phenomena,” J. Inorg. Nucl. Chem. 25, 559–566 (1963).

    Article  Google Scholar 

  24. J. L. Bischoff and K. S. Pitzer, “Phase Relations and Adiabats in Boiling Seafloor Geothermal Systems,” Earth and Planetary Sci. Letters 75, 327–338 (1985).

    Article  Google Scholar 

  25. A. I. Abdulagatov, G. V. Stepanov, and I. M. Abdulagatov, “Crossover Equation of State and Microstructure Properties of the Infinite-Dilute Solutions Near the Critical Point of the Pure Solvent,” Russ. J. Structural Chem. 42, 585 (2001).

    Google Scholar 

  26. R. W. Potter, R. S. Babcock, and G. K. Czamanske, “An Investigation of the Critical Liquid-Vapor Properties of Dilute KCl Solutions,” J. Solution Chem. 5, 223–230 (1976).

    Article  Google Scholar 

  27. W. Wagner and A. Pruss, “The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use,” J. Phys. Chem. Ref. Data 31, 387–535 (2002).

    Article  Google Scholar 

  28. R. Span and W. Wagner, “Equation of State for Technical Applications II. Results for Nonpolar Fluids,” Int. J. Thermophys. 24, 41–109 (2003).

    Article  Google Scholar 

  29. F.-Y. Jou and A. E. Mather, “Vapor-Liquid-Liquid Locus of the System Pentane + Water,” J. Chem. Eng. Data 45, 728–729 (2000).

    Article  Google Scholar 

  30. P. C. Gillespie and G. M. Wilson, Vapor-Liquid and Liquid-Liquid Equilibria: Water-Methane, Water-Carbon Dioxide, Water-Hydrogen Sulfide, Water-n-Pentane, Water-Methane-n-Pentane, Gas Processors Association Research Report RR-48, Project 758-B-77 (Wiltec Res. Co., Inc., Provo, Utah, 1982).

    Google Scholar 

  31. C. Tsonopoulos and G. M. Wilson, “High-Temperature Mutual Solubilities of Hydrocarbons and Water,” AIChE J. 29, 990–999 (1983).

    Article  Google Scholar 

  32. S. Sourirajan and G. C. Kennedy, “The System H2O + NaCl at Elevated Temperatures and Pressures, Amer. J. Sci. 260, 115–141 (1960).

    Google Scholar 

  33. M. Yu. Belyakov S. B. Kiselev, and J. C. Rainwater, “Crossover Leung-Griffiths Model and Phase Behavior of Dilute Aqueous Ionic Solutions,” J. Chem. Phys. 107, 3085 (1997).

    Article  Google Scholar 

  34. A. A. Povodyrev, M. A. Anisimov, J. V. Sengers, et al., Critical Locus of Aqueous Solutions of Sodium Chloride, Technical Report Prepared to IAPWS, IPST (Univ. of Maryland at College Park, 1998).

  35. Y. Shibue, “Modified Rackett Equation Applied to Water and aqueous NaCl and KCl Solutions,” J. Chem. Eng. Data 45, 523–529 (2000).

    Article  Google Scholar 

  36. K. S. Pitzer and R. T. Pabalan, “Thermodynamics of NaCl in Steam,” Geochim. et Cosmochim. Acta 50, 1445–1454 (1986).

    Article  Google Scholar 

  37. C. S. Oakes, R. J. Bodnar, J. M. Simonson, and K. S. Pitzer, “Critical and Supercritical Properties for 0.3 to 3.0 mol kg−1 CaCl2 (aq),” Geochim. et Cosmochim. Acta 58, 2421–2431 (1994).

    Article  Google Scholar 

  38. K. I. Shmulovich, S. I. Tkachenko, and N. V. Plyasunova, “Phase Equilibria in Fluid Systems at High Pressures and Temperatures,” in Fluids in the Crust: Equilibrium and Transport Properties, Ed. by K. I. Schmulovich et al. (Chapman & Hall, London, 1995), pp. 193–214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.I. Abdulagatov, G.V. Stepanov, I.M. Abdulagatov, 2008, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulagatov, A.I., Stepanov, G.V. & Abdulagatov, I.M. Critical properties of aqueous solutions. P. II. Therm. Eng. 55, 795–803 (2008). https://doi.org/10.1134/S0040601508090127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601508090127

Keywords

Navigation